Chapter - 7
SURFACE AND VOLUME INTEGRALS

Surface Integrals
Any integral which is to be evaluated over a surface is called a surface integral.

Suppose S is a piecewise smooth two-sided surface and is of finite area. Let (x, y, z) be a scalar valued continuous point function defined over S. Subdivide the surface S into n sub-surfaces



S1, S2,…….,Sn.

In each Sk, consider an arbitrary point Pk(xk, yk, zk) and form the sum

	 




The limit of this sum as  in such a way that the largest dimension of each . This limit, if exists, is called the surface integral of  (x, y, z) over  S and is denoted as  .

Suppose S is a piecewise smooth two-sided surface and is of finite area. A unit normal  to any point P of the positive side (outer side) of S is called a positive or outward drawn unit normal.





Let (x, y, z) be a vector valued continuous point function defined over S. Then  is the normal component of  at P. Its integral over S is  and is known as the flux of  over S.


Other surface integrals are   where  .

Result : Let a continuous vector field  be defined on a surface S. If the surface S has projection Rxy on the xy plane, whose normal meets S in one and only one point, then prove: 


	 , provided .
Remarks :
1.	 If Ryz  is the projection of S on the yz-plane, then

	 
2.	If Rzx is the projection of S on the zx-plane, then

	 
SOLVED EXAMPLES
Example 1. Evaluate    where  and S is the part of the plane  which is located in the first octant. 
Solution : Given that   
and the surface S is given by   
⟹	 so    
Hence unit normal to the surface S is                       
⟹	                 
The surface S is the plane  in the first octant, which in intercept form is given by   
are the intercepts made by the plane on x, y and z axis respectively.                                 
We take the projection R of surface S on the  plane. 
In  plane     and  varies from. 
Thus the region R is  

Now,
      
                           
                           
                              
                            
                          
                           
                           
Example 2. Evaluate   where  and S is the part of the plane   which is located in the first octant. 
Solution : Given that   
and the surface S is given by   
⟹	 so   
Hence unit normal to the surface S is                     
⟹	                 
The surface S is the plane  in the first octant, which in intercept form is given by   
Here 6, 4, 2 are the intercepts made by the plane on x, y and z axis respectively.                                 
We take the projection R of surface S on the  plane. 
In  plane  and  varies from. 
Thus the region R is  
Now,  
                                 
                                 
                                 
                                  
                                 
Example 3. Evaluate   where   and S is the surface of               the plane   in the first octant.
Solution : Given that  
and the surface S is given by . 
Hence unit normal to the surface S is  
    and  
                                               
We take the projection R of S in the first octant on the  plane. 
In  plane  and  varies from.
Thus the region R is  .
Now,    
                                   
                                   
                                 
                                 .  
Example 4. Evaluate   where   and S is the surface of cylinder included in the first octant between                             
Solution : Given that  
and S is the surface of cylinder  included in the first octant between 	 
	 
i.e. the surface ACDF as shown in fig.                                                                                     
Here S:
                                                                
                                                                                       G            D
                                                                F        E                                              
                                                                        O                C  
                           and                                                   A             B      
     .            
Hence the projection of S on the  plane will not work.
We take the projection of S on  plane. Let R be the projection. 
Then  R  =  rectangular region OCDG.
We have  
and       
In  plane  varies from  and  varies from  
Now, 
                           
                           
Example 5. Evaluate   where   and the surface S is the cube bounded by the planes 
Solution : Given that     
and the surface S consists of six surfaces  
i.e. six planes of a cube.
They are shown in Fig. as
ABCD, OEFG, BEFC, AOGD,           
 OABE  and  GDCF. 
Then   
                                                                                                                                                                           
(1) For the face ABCD:
         and 
Then                       
                                                                                                
                                                 
(2) For the face OEFG:
         and  

Then 
                                        
                                        
(3) For the face BEFC:
         and   
Then 
                                       
                                       
(4) For the face AOGD:
         and    . 
Then  
                                       
                                       
(5) For the face OABE:
         and  
Then 
(6) For the face GDCF:
        and    . 
Then   
                                      
                                       
Now,   
Example 6. Evaluate   if   and S is the surface of
  bounded by 
Solution. Given that   
and the surface S is given by  
 .
Hence unit normal to the surface S is
              and     
And          
 
                                 
We take the projection R of surface S on  plane. 
Region R is bounded by       . 
Now, 
                                           
                                               
Example 7. Evaluate    if   and S is the surface of    bounded by 
Solution : Given that    
and the surface S is given by 
 .
Hence unit normal to the surface S is
	   and     
And	 
                         
We take the projection R of surface S on  plane. 
Region R is bounded by  . 
Now, 
  
   
   
  
  

	
	
Volume Integral
Any integral which is to be evaluated over a volume is called a volume integral.





Suppose V is a volume enclosed in a closed surface S. Let  (x, y, z)  be a scalar valued continuous point function defined over V. Subdivide the volume V into n elements of volume V1, V2,……., Vn. In each Vk, consider an arbitrary point Pk (xk, yk, zk) and form the sum

 




The limit of this sum as  in such a way that the largest dimension of each. This limit, if exists, is called the volume integral or space integral of (x, y, z) over V and is denoted as  


If (x, y, z) be a vector valued continuous point function defined over V, then  is also an example of volume integral.
SOLVED EXAMPLES
Example 1. Let  Evaluate (a) (b),
where V is the closed region bounded by the planes   .
Solution : To find the limits of integration.
Consider the equation of a plane.                                 	….. (1)
Putting  Hence  varies from  
Putting  Hence y varies from  
and . Hence z varies from  

                            
                          
                          
                          
                          
                          

(b) 
 
  
 
   
 
    
    
   
   
  
   
Example 2. Evaluate ,  where   and  is the region bounded by the surfaces 
Solution : Given that  
and  is the region bounded by the surfaces 
    
                         
                        
                        
                                                                                                          
                        
                        
                        
                         
Example 3. Let    Evaluate,  where and  is the region bounded by the surfaces 
Solution : Given that 
and  is the region bounded by the surfaces 
Hence    
                                
                                
                                
                                 
                                 
                                 
                                 
                                 
                                 
                                 
Example 4. Evaluate  where V is the closed region bounded by the cylinder 
 and the planes .
Solution : Here the limits of integration are   
	 

                                      
                                      
                                       
                                      
                                     
                                      
                                     
Example 5. If    then evaluate    where V is the closed region bounded by the planes  and 
Solution : Here the limits of integration are 

                

                                      
                                      
                                      
                                     
                                     
Example 6. If  then evaluate  
where V is the closed region bounded by the planes  and 
Solution : Here the limits of integration are 

        
Now, 
                            
                            
                              
                              
                              
                            
                              
                                 
Example 7. Find the volume of the region common to the intersecting cylinders 
 .
Solution : By symmetry the volume of the common region will be shared equally by eight octants. Hence the required volume V is given by
V = 8 (Volume of the common region in the first octant)
The limits of integration in the first octants are 
	.
Now,  
                   
                   
                   
                    
                  
7.4.  Stoke's Theorem

Suppose S is an open, two sided surface bounded by closed non-intersecting curve C (simple closed curve curve) traversed in the positive direction, and is a vector function of position with continuous derivatives. Then

	
SOLVED EXAMPLES
Example 1. Verify Stokes theorem when  , where S is the upper half surface of the sphere   and C is its boundary.  
Solution : By Stokes theorem we have
	                                        		….. (1)
Here  and   
 
and	
                            , 
	 

LHS of (1)  
R = Projection of S on the xy plane 
 LHS of (1)area of the unit circle                                               	….. (2)
Now, C is the boundary of the upper half of the sphere, which is the circle  in the xy plane, where  and  . 
We take the parametric equation of C as     . 
On the xy plane,   . 
 
                         
                      
                      
                       . 
Thus the stoke’s theorem is verified.
Example 2. Evaluate by Stoke’s theorem,  where C is the curve .
Solution : By Stokes theorem, we have
	                                             	….. (1)
Here   ,           
	 
 
.
Example 3. By using Stoke’s theorem, evaluate , where C is the boundary of the surface S which is the upper half surface of the sphere   
Solution : By Stokes theorem we have
	                                            	….. (1)
Here         ⟹    
and ,
⟹	   	
	 
                              
and 	
∴    	
and	
Then equation (1) becomes
               
                                
Here R is the Projection of S on the xy plane then   varies from  and  varies from  ,  then above equation becomes
    
	      
	    
                  
                                                             (∵ The function in 1st integral is odd and in 2nd integral is even)
                  
                  
 


Example 4. Prove that a necessary and sufficient condition that  for every closed curve C is that   identically.
Solution :  By Stokes theorem, we have
	   					….. (1)
Necessary condition : Let  for every closed curve C. 

We have to show that    . 
We apply the method of contradiction.

Assume the contrary that   at some point P of S. 


Since  is continuously differentiable,   is continuous. Hence there will be some region containing the point P, where   . 

Suppose that S is the surface in this region and   is the unit normal to it such that it is parallel to   at each point of S.
	is a positive constant.
If C is the boundary of S, Stoke’s theorem gives         
	 
But this contradicts the hypothesis that   .
Hence the initial assumption must be wrong. 

Hence   at all points of S.

Sufficient condition : Assume that    
 .   
Then	 		by (1)    
Divergence Theorem of Gauss

Suppose V is the volume bounded by a closed surface S and is a vector function of position with continuous derivatives. Then



where is the positive (outward drawn) normal to S.
SOLVED EXAMPLES
Example 1. By using Gauss divergence theorem, evaluate  where    and  is the surface of the cube bounded by 
Solution :  By divergence theorem, we have 
                                                	..... (1)
Here     and  is the surface of the cube bounded by
	 
Now,	
Then equation (1) becomes
	 
                                    
                                    
                                    
                                    
                                    
Example 2. By using divergence theorem, evaluate  where    and  is the surface of the cube bounded by 
Solution :  By divergence theorem, we have 
	                                	….. (1)
 Here      and  is the surface of the cube bounded by 
	 
Now,	
Then equation (1) becomes
            
                                  
                                  
                                  
Example 3. Verify divergence theorem for   
taken over the rectangular parallelepiped    . 
Solution : By divergence theorem, 
	                                                	….. (1)
Here 
]
	           .
LHS of (1) 
                    
                    
                    
                                      	….. (2)
Now, S is the surface of a parallelepiped   as shown in the fig.
                    E                  D
             F                   G      
                   O                     C
                A                  B
RHS of (1)   
                                                           .
(1) For: 
  
                                      

(2) For:   
 
                                       
(3) For: 
 
                                    .
(4) For: 
   
                                      
(5) For: 
.
(6) For: 
  
                                      
With these values, 
RHS of (1)  
                   .
Thus the divergence theorem is verified.
Example 4. Evaluate that, where   and S is the surface of the solid cut off by the plane  from the first octant.

Solution : We have   
By divergence theorem, 
                                     		          
 		                                    
                                       	        
                                       		           
                                    		    
                                   		   
                                 	                  
                                 	                 
                             	                  
                              	                .
Example 5. Show that,  where V  is the volume enclosed by a closed surface S. 
Solution : We have   . 
      By divergence theorem,   
                                                                     
                                                                     
                                                                    
Example 6. If  then by divergence theorem, prove that, for any closed surface S. 
Solution : By divergence theorem, 
                                        			             
                                        			             
Example 7. Show that, 
where S is the surface of the sphere .
Solution : Let   . 
We have    .
By divergence theorem,    
   
                                                                
                                                              .  
                                                                              [∵
Example 8. If F and G be scalar functions with continuous derivatives of the second order at least, then show that  
                           .
Solution : By divergence theorem,  
For 
     
                      	….. (1)
Interchange of F and G in (1)  gives
                                        	….. (2)
Subtracting (2) from (1), we obtain
               


	(b)                      (c) 


	(d) If and be scalar functions of position with continuous derivatives of the second order 

		at least, then .
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