

Chapter – 7 
ELEMENTARY PRINCIPLES OF CLASSICAL MECHANICS

Some Definitions
(1)  Velocity : If   is a position vector (or radius vector) of a particle from some given origin (fixed point), then the velocity   of a particle is given by 
	.
(2)  Acceleration : If   is the velocity of the particle at any instant  then its acceleration  is given by
	.
(3)  Linear momentum : The linear momentum of a particle, denoted by , is defined as the product of mass of a particle and its velocity, 
i.e.,  	, 	where  is the mass of a particle and   is its velocity.  
Linear momentum of a particle is directed in the same direction as velocity   .
(4)  Angular momentum : The angular momentum of a particle about any fixed point , denoted by  , is defined as 
	 , 	
where  is the radius vector from   to the particle and   is its linear momentum. 
The angular momentum may also be considered as the moment of linear momentum.
(5)  Torque or Moment of a force : The moment of a force or torque about point , denoted by  , is defined as 
	,	where   is the force acting on a particle.
(6)  Work : If a particle having position vector   is displaced through a distance  due to the application of force , then the work done by the force upon the particle, denoted by  , is given by
	
If the particle is displaced from point 1 to point 2, then the work done by the force  upon the particle is 
given by
	     or    
(7)  Virtual displacement : Any real displacement is always associated with a change in time. The displacement which takes place without any change in time, i.e., the displacement takes place instantaneously, is called a virtual displacement.
Thus, the virtual displacement is the imaginary or infinitesimal displacement. 
We denote the real displacement by  and the virtual displacement by  .
(8)  Virtual work: Work done by a force on the particle when a virtual displacement is given to the particle is called virtual work.
If   is a virtual displacement of a particle, then the virtual work done by the force   is give by
	
(9)  Kinetic energy : The kinetic energy of a particle is defined as half the product of the mass of a particle and the square of its velocity.
If a particle of mass  is moving with velocity   , then its kinetic energy, T, is given by
	     
Kinetic energy is the scalar quantity.              
Note:   
(10)  Conservative force : If the work done by a force in moving a particle from one point to another is independent of the path traversed by the particle, then the force (and the system) is said to be conservative.
Conservation Principles (Laws)
The word ‘conservation’ applies in the sense of constantness when some characteristic of the motion of a system remains constant in time. There are conservation laws relating to linear momentum, angular momentum, energy and various other quantities.
Theorem 1. (Conservation theorem for the linear momentum of a particle): If the total force  , acting on a particle is zero then   and the linear momentum   is conserved. 
Proof : Let the total force   acting on a particle is zero, i.e., .
By Newton’s second law of motion,   , where   is a linear momentum of a particle.
	 ,   
 	 a constant vector, i.e., the linear momentum   of a particle is conserved.
Theorem 2. (Conservation theorem for the angular momentum of a particle): If the total torque, , on the particle is zero, then   and the angular momentum   is conserved.  
Proof: By definition of angular momentum and torque,
	    and     
 	
	              	[         and      ]
	    (  )			[           ]
	    [   ) ]
	    [   ) ]     		[       ]
    If the total torque  , on the particle is zero, then  .
 	 a constant vector, i.e., the angular momentum   of a particle is conserved.  
Theorem 3. (Conservation theorem for the linear momentum of a system of particles) : If the total external force on the system of particles is zero, the total linear momentum is conserved.
Proof : Consider the system consisting of    particles. Let  be the mass of the th particle and    be its position vector. 
By Newton’s second law, for th particle, we have
	
or	 
Hence for the system of particles,
	
⟹	    [     ]
or		       [    ,  the total external force acting on the system ] 
or							….. (1)
where    is the total linear momentum of the system. 
If the total external force on the system of particles is zero, i.e.,   , then from (1), we get
 
 	 a constant vector
   The total linear momentum is conserved. 
SOLVED EXAMPLES
Example .  Show that for a single particle with constant mass the equation of motion implies the following differential equation for the K.E.,  , while if the mass varies with time the corresponding equation is .
Solution : Case I:    is constant
Consider a particle of mass    moving with velocity  .
    By Newton’s second law of motion,
 
Now,  the K. E.,   
	 

Case II:   is variable
Linear momentum of the particle is     and  K. E.,   . Then  
   
 	 
Constraints
Constraints mean limitations or restrictions. Constrained motion means restricted motion. In many situations, the object in motion is restricted or constrained to move in such a way that its coordinates and/or velocity components must satisfy some prescribed relations at every instant of time. These relations can be expressed in the form of either equations or inequalities.
For example,
(i) Motion of a billiard ball on the table. Its motion is restricted by the boundaries of the table, and it moves on the surface of the table. Thus, the motion of a billiard ball on a billiard table is a constrained motion.
(ii) In rigid bodies, the motion must be such that the distance  between any two particles is always the same.
(iii) The beads of an abacus are constrained to one dimensional motion by the supporting wires.
(iv) Gas molecules within a container are constrained by the walls of the vessel to move only inside the container. 
Degrees of Freedom
The number of independent quantities required to specify the position of the system completely is called the degrees of freedom of the system. 
Examples:
(1)  A particle moving in a plane has two degrees of freedom because its position can be given by two cartesian coordinates    or two polar coordinates  . 
(2) A system consisting of  particles moving freely in space requires  coordinates to specify its position. Thus the number of degrees of freedom is . 
Generalized Coordinates  and  Generalized Velocities: 
Any  quantities which completely determine the position of a system with  degrees of freedom are called generalized coordinates of the system. 
Generally they are denoted by 	        or           ,  . 
The quantities   are called generalised velocities. 
In above example (1),    or   are generalized coordinates and hence the generalized velocities are   or  .
Note: The generalized coordinates alone do not determine the state (mechanical) of the system. It is essential to know the coordinates and velocities simultaneously. 
Principle of Virtual Work:
Consider a system of  particles with position vectors  . The virtual displacement of a particle is the displacement in no time or in time  . 
Hence the virtual displacement   is independent of time  . 
Let the system be in equilibrium. Then each particle of the system is in equilibrium, 
i.e., the total force on each particle vanishes, . 
Then the virtual work of the force  in the displacement   vanishes, 
i.e.,  	,  .
	
∴    The condition for equilibrium of a system is that the virtual work of the applied forces vanishes, 
i.e.,	  .  
This is called the principle of virtual work.
D’Alembert’s Principle
 The virtual work on a mechanical system (for which the net virtual work of the forces of constraints vanishes) by the applied forces and the reversed effective forces is zero, 
i.e., 	 , 
where  denotes the applied force on the th particle of the system.
Proof : Consider a system consisting of  particles whose position vectors are given by .
The equations of motion of the system are
 	   or     ,      
i.e.,	  				    	 ….. (1) 
Eq. (1)  each of the particles of the system is in equilibrium under the forces  and   . Hence the system of the particles is in equilibrium.
	The sum of the virtual work of    and    is zero, 
i.e.,	 
⟹	 					….. (2)
Now,  	, 
where  &   are the applied force and force of constraints respectively on th particle of the system.
 		….. (3)
If we restrict ourselves to the systems in which net virtual work of the forces of constraint vanishes then
   						….. (4)
(3) & (4) ⟹  
Lagrange’s Equations of Motion
Lagrange’s Equations of motion for conservative system are
 , 
Derivation of the Lagrange’s equations of motion for conservative system in the form 
 ,   from D’Alembert’s principle
Let the system of particles be specified by generalised coordinates  . 
Consider that the constraints are holonomic. Then the position vectors of the particles are expressed as
   				….. (1)
D’Alembert’s principle is
    
or 	        			    	….. (2)
[ dropping the superscript  in  ]
From (1), we have 
   					….. (3)										[ ]
and 	      or   
	   						….. (4)
Now,	
 	 	….. (5)
where	   					….. (6)
are called the components of generalized forces (or in short generalised forces).
Also,	   		[ using (3) ]
		       
      =   
		 	 
		       
		       
		         [∵ K. E. of the th particle,  ]  		       
       			….. (7)
where    is the total K. E. of the system.
  
Using (5) and (7) in (2), we get 
	 
 	 
	    [   The constraints are holonomic, all  are independent ]
or 	  ,     			….. (8)
Eqns. in (8) are called Lagrange’s equations of motion. They are  partial differential equations of 2nd order.
For a conservative system, we have
 				 		….. (9)
 				….. (10)
The P.E.  is independent of    and hence  
	   					 	….. (11)
Using (10) and (11) in (8), we have 
	 
	
or	 ,     where   .
The quantity L is called the Lagrangian of the system.
SOLVED EXAMPLES
Example 1.  Construct the Lagrangian for a particle moving in space and then deduce the equations of motion.
Solution : Let a particle of mass  be moving in a space and  be its position at any time .
   The K. E.,  and    P. E., 
Lagrangian,  
Lagrange’s equations of motion are given by 
 .
Here    and   .
For  , the equation is
	 	 
 	
 	    or     
Similarly, for  , we get
 ,    
If the conservative force is    then   ,  
i.e.,	 . 
 	 ,    ,     are the required equations.
Example 2. Construct the Lagrangian for a particle moving in a plane and then deduce the equation of motion using (i) cartesian coordinates (ii) polar coordinates
Solution : (i) In Cartesian coordinates :
Let  be the position of a particle of mass  at time . 
Then the K. E.,  and P. E.,  of the particle are 
 
	Lagrangian,  
Lagrange’s equations of motion are   
where ’s are the generalised coordinates.
Here    and  
For    Lagrange’s equation is  
	
	    or     
Similarly, for     
If the conservative force is  ,  then   ,  
i.e., 	
	  ,       are the required equations.

(ii) In Polar coordinates: 
Let  be the position of a particle P at time . Then the K. E.,  and P. E.,  of the particle are
 
	Lagrangian,  
Lagrange’s   r-equation is   
	 
 	 
	 
Lagrange’s   θ-equation is   
	 
	 
Now,  	,  
i.e.,  	
	  ,          are the required equations.
Example 3. Two particles of masses  are connected by a light inextensible string which passes over a small smooth fixed pulley. If  , then show that the common acceleration of the particle is   .
Solution : The system of two particles of masses  connected by a light inextensible string passing over a small smooth fixed pulley (Small smooth pulley means pulley is assumed frictionless and massless) is as shown in the figure below. 
Let  be the length of the string and   = distance of   from AB.
Then  distance of   from AB.
Clearly there is only one independent coordinate   , which is 
the generalised coordinate of the system.
 	
	    
and         
	  
Lagrange’s equation is  
 	 
 	 
 	 .  This gives the value of the common acceleration .
Example 4.  Construct a Lagrangian for a spherical pendulum and then obtain the Lagrange’s equations of motion. 
Solution : A spherical pendulum consists of a mass suspended by a rigid weightless rod such that the mass point moves on a surface of a sphere of radius  . Here the position of the mass point is determined by three quantities   (spherical polar coordinates).
 (
P(m)
r
θ
ϕ
O
Y
Z
X
)Since  is held fixed the system has two degrees of freedom, therefore we say that the mass point P is specified by   , where    is constant. Hence, the generalised coordinates are θ and ϕ. 
K. E.,  
	 
	
[    ]
P. E.,   
  The Lagrangian is
	 
	   
Lagrange’s  -equation is    . This gives
  
	 				….. (1)
Similarly, Lagrange’s  -equation,     gives
 
	 constant  h (say) 				….. (2) 
From (1) and (2), we can derive a second order differential equation in  :
   

Example 5.  Set up the Lagrangian for a simple pendulum and obtain an equation describing its motion.
Solution : Let    be the mass of the bob and  be the angle made by the string OB of the pendulum with the vertical OA. Let  be the length of the string OB.
Here the position of the mass  is specified by the angle . Therefore the generalized coordinate is the angle .
K.E. ,           [  displacement AB  =   ]
 (
O
m
B
A
C
θ
)The potential energy of mass  (taking a horizontal plane through the lowest point A as a reference level) is given by 
 
   
Thus, the Lagrangian is,   
Lagrange’s equation is   , which gives
 
	 
 	,    which is the required equation of motion.
Example 6.  A bead is sliding on a uniformly rotating wire in a force free space. Show that the acceleration of the bead is  ,  where   is the angular velocity of rotation . 
 (
r
θ
P(x, y)
Y
X
)Solution : Given that, the angular velocity of rotation of the wire is.
	  
 	 
If the position of the bead at time t is (x, y), then 
	 ,       
 	The generalized coordinate is  . 
Now,	K. E.,   
		  
As there is no force field, the P. E., 
 	The Lagrangian of the system is 
	  
Lagrange’s equation     gives
 
	 
	 
Example 7.  Two mass points of masses  and   are connected by a string passing through a hole in a smooth table so that  rests on the table surface and  hangs suspended. Assuming  moves only in a vertical line, what are the generalised coordinates for the system? Write down the Lagrangian for the system. Reduce the problem to a single second order differential equation and obtain a first integral of the equation.
Solution: Let   be the total length of the string. Consider OX as an initial line.
Let  be the position of   on the table.
	 ,  
The system is specified by two generalised coordinates   .
K. E. of   ,  
K. E. of  ,  
P. E. of   ,     	[   on the table P. E. = 0 ]
P. E. of   ,  
Lagrangian of the system is
 
	    
Lagrange’s   -equation,     gives 
 
or  	   			….. (1) 
and Lagrange’s θ-equation,     gives 
	 
	   				….. (2)
(1) and (2)  
or 	  			….. (3)
This is the required second order differential equation.
Multiplying (3) by    we get
	 
Integrating w. r. t.  , we get
 
 	 
	
	  constant
This is the desired first integral.
Velocity-dependent potentials
Lagrange’s equations are     , j = 1, 2, . . . , N         	….. (1)
where   
For conservative systems equations (1) can be written in the form 
	    				   		….. (2)
where     and   
Suppose that the given system is not conservative but the generalised forces  are obtainable from a function  
Define  
Then Lagrange’s equations (1) become  
	  
	 
or	 ,       j = 1, 2, . . . , N.			    	….. (3)
where   
Equations in  (2) and (3) are of the same form.
The quantity U is called the generalised potential or velocity dependent potential.
Theorem  The Lagrange’s equations of motion can be written in the form 
   
for a system which is partly conservative. The quantity L refers to the conservative part and  to the forces which are not conservative.
Proof : In general, Lagrange’s equations are written in the form
                     				….. (1)           
   where        					….. (2)
Suppose that the system is partly conservative. Then,
     
where    and   are conservative and non conservative parts of  respectively.
By definition of conservative forces, we write    where  V = P. E.
	 
	        
	          		        			….. (3)
where      are the components of generalised forces which are non conservative.
Combining (1) and (3), we get
	 
	 
	       [     ] 
or	  ,     i = 1, 2, …, N
The quantity    is the Lagrangian which corresponds to conservative part of the system and   are non conservative.
SOLVED EXAMPLES
Example 1. Show that the Lagrange’s equations    can also be written in the form   .    
Solution : We have  ,    
	 
Differentiating partially w. r. t.   , we get 
 
	       
          		….. (1)
   
Also,      [is a fun of 
	             			….. (2)
(1) and (2) 
	 	          
	    
Example 2.  If L is a Lagrangian for a system of n degrees of freedom satisfying Lagrange’s equations, show by direct substitution that 
  
also satisfies Lagrange’s  equations where F is any arbitrary but differentiable function of its argument.
Solution : Lagrange’s equations are
 ,    				….. (1)
Let	 ,  where  
Then	     or    
	       and      
      Eqn. (1) becomes  
 
	   			….. (2)
Now	
	  							….. (3)
	     		[ using (3) ]
           
		          				….. (4)
(2) and (4) ⟹    , which are the Lagrange’s equations for L’.
Thus      satisfies Lagrange’s equation.
Example 3.  For a mechanical system the generalized coordinates appear separately in the kinetic energy and the potential energy such that 
  .
Show that the Lagrange’s equations reduce to   .
Solution : Given that  
	 
	       and       
∴ 	Lagrange’s equations     assume the forms
  
	 
	    
or   	.
Example 4. A particle moves in a plane under the influence of a force acting towards a centre of force whose magnitude is  , where  is the distance of the particle to the centre of force. Find the generalized potential that will result in such a force.
Solution : If   is the generalised potential, then we have 
	 
Here the generalized coordinate is .
	    
But given force is  
 	
		            
		             
		           
		            
		          
This shows that   
