3.2 Project Planning 59

58 Software Project Management,

Ll
) AW
)

1. Estimation: The following project atiributes have to be estimated.

respansihilities of a project manager. The responsibilities and activities of & project manager

is large and varied. The job responsibility of a project manager ranges from ivisible activities
like building up team morale to highly visible custowmer presentations. Most managers take
responsibility for project proposal writing, project cost estimation. scheduling. project staffing.

(i) Cost How much is it going to cost to develop the software?
(i) “Duration How long is it going to take to develop the product?
(i) Effort How much effort would be required to develop the produet?

e 2

software process failoring, project monitoring and control. software configuration management.

risk management, interfacing with clients, managerial report writing and presentations, etc.
These activities are certainly numerous. varied and difficult to enumerate, but we can broadly -
classify them into two major types of responsibilities of the project manager.

The effectiveness of all sther plauning activities such as scheduling and staffing ave based ou
the aceuracy of these estimations. :

9. Scheduling: After the estimations ave made, the schedules for manpower and other re-
sotrees have to be developed.

We can broadly classify the different activities of a project manager into project planning, and)
project monitoring and control activities. ! . 3. Staffing: Staff organization and staffing plans have to _u.m mede. |

e —

\

L

4. Risk management: Risk Ewﬁ&nﬁmcﬁ_ analysis, aud abatement planning have to be

b
<) m] We give an overview of these two responsibilities. Later. we discuss %m.:.. in :.pc& detail. : done. A
b w 1. Project planning: Projecl planning involves estimating several characteristics of ihe 5. Miscellaneous plans: Several other plans such as quality assurance plan. configuration
: project and then planning the project activities based on the estimates made. Project plan- . management plan. etc. have to be done. .
i ning is undertaken immediately after the feasibility study phase and before the requirements
m 2 M analysis and specification phase.' The initial project plans that are made are revised from time . - =]
y to time as the project progresses and more project data become available. %) o (S
! ? Effort Cost
- : 2. Prdject monitoring and control activities: The project monitoring and control activ- ’ estimation estimation
AW \ ; ities are undertaken once the development activities start. The aim of the project monitoring - :
U M..* and control activities is to ensure that the development proceeds as per plan. The plan is
3 changed whenever required to cope up with the situation at hand. 2 : &
: ize
g o % estimation
D , =i 3.1.2 Skills Necessary for Software Project Management
p Q A theoretical knowledge of different project management techniques is certainly necessacy ’ Duration Project Schediling
" to become a successful project manager. However, effective software project management estimation staffing
S frequently calls for good qualitative judgement and decision-making capabilities. In addition ; |
to having a good grasp of the latest software project management techniques such as cost
i estimation. risk maragement, and configuration management, ete.; project managers need Figure 3.1: Precedence ordering among planning activities. W L
Y _ good communication skills and the ability get work done. However, some skills such as tracking A : .
. Figure 3.1 shows the order in which tl ; ities-arestatty-under———

and controlling the progress of the project, customer interaction; managerial presentations, and
team building are largely acquired through experience. Nonetheless, the importance of a sound
knowledge of the prevalent project management techniques cannot be overemphasized. The
objective of the rest of this chapter is to introduce you to the same.

With this brief discussion on the responsibilities and roles of software project managers. in
the next section we examine some important issues in project planning.

taken. Observe that size estimation is the first activity.

| Size is the most fundamental parameter based on which all other estimates are made. _

Based on the size estimation, the effort required to complere the project and the duration
over which the development is to be carried out are estimated. Based on the effort estimation.
thie cost of the project is computed. The estimated cost forms the basis on which the price
3.2 PROJECTP LANNING negotiations with the customer is made. Other planning activities such ag staffing, scheduling,
S ote.. are undertaken based on thie estimations made. Tn subsection 3.3.4, we shall discuss the
Once a project is found to be feasible, software project managers underiake project planniug, techniques popularly being used to make these estimations.

Praject planning is nndertaken and completed even before any development activity starts. Project planning requires utmost care and attention since commitment to unrealistic time
yEet Project planning consists of the following essential activities: and resource estimates result in schedule slippage. Schedule delays can eanse customer dissat-

Software Project Management

wtion and adversely affect team morale. It can even cause project failure. For this reason.
jject planning is considered to be a very important activity. However, for effective project
nning. in addition to the wuoﬂm&w.r of the varivus estimation techniques, past experience
“rucial.
Especially for large projects, it becomes very difficult to make accurate plans.” A part of
s difficulty is due to the fact that the project parameters, scope of the project, project staff,
may change during the span of the project. In order to overcome this problem, sometimes
,Ject managers undertake project planning in stages. Planning a project over a number of
zes protects managers from making big commitments too early. This technique of staggered
oning is known as Sliding Window Planning. In the sliding window technique, starting with
initial plan, the project is planned more accurately in successive development stages. At
start of a project, project managers have incomplete knowledge about the details, On the
jest—Their-information- PIoves as the project progresses »Eo:mu different
ses. After the completion of every phase, the project managers can plan each subsequent
se more accurately E.m with increasing levels of confidence.

.1 The muvgm. Document

€ project planning is complete, project managers document their plans in a Software
ject Management Plan (SPMP) document. Listed below are the different items that the

1P document, should Ewocmm This Fm_" can be used as a possible organization of the SPMP
iment.

un:sgiaaaﬂgm .mc.wasg.m .m.aumn» Nﬁnznhmsman .ﬁsﬁﬁmﬁgﬁy
cument: k ,

- Introduction
" ?V Objectives
(b) Major Functions
{¢) Performance Issues
(d) Management and Technical Qo:mﬂ.ﬁ:pm
Project estimates
(a) Historical Data Used
(b) Estimation Techniques Used. "
(e) Effort, Resource, Cost. and Project Duration Estimates
‘Schedule

“(a) Work Breakdown Structure
b} Task Network Representation
{c) Ganrt Chart Representaticn
id] PERT Chart Representation

Project resources .

{a) People

(b) Hardware and Software
{cF Special Resources

3.8 Metrics for Project Size Estimation 61

5. Staff organization

(a) Team Structure
(b) Management Reporting
6. Risk management plan
(a) Risk Analysis
(b) Risk Identification
(e) Risk Estimation
(d) Risk Abatement Procedures
7. 1..&@09 tracking and control plan

. Miscellaneous plaus

(a) Process Tailoring

(b) Quality Assurance Plan

(¢) Configuration Management Plan

(d) Validation and Verification

(e) System Testing Plan

(f) Delivery, Installation, and Maintenance mv_wu

3.3 METRICS FOR PROJECT SIZE ESTIMATION

As already mentioned, accurate’ estimation of the problem size is fundamental to satisfactory
estimation of other project parameters such as effort, time duration for completing. the project
-anid the total cost for developing the software. Before discussing wvﬁnovdwua metrics to esti-
mate the sizeof a project, let us examine what the term problem size means in the context of
software proiects. The size of a project is obviously not the number of bytes that the source
code oceupics. It is neither the byte size of the executable code.

ﬂ..o project size is 3 measure of the problem complexity in terms of the effort and time required -
to develop the product.)

Currently, two metrics-are vovEE..a. being nsed to estimate size: lines of code (LOC) and
function point (FP). The usage of each of these metrics in project size estimation has its own
advantages and disadvantages which are discussed in the following.

3.3.1 Lines of Code (LOC)

LOC is the simplest among all metrics available to estimate project size. Consequently. this
metric is extremely popular. This metric measures the size of a project by counting the number
of source instructions in the developed program. Obviously. while counting the number of
source instructions. lines used for commenting the code and the header lines are ignored.
Determining the LOC count at the end of a project js very simple. However, accurate
estimation of the LOC count at the beginning of a project is very difficult. In order to esti-
mate the LOC count at the beginning of a project. one would have to make a systematic guess.

62 Software Project Management

Project managers usually divide the problem into modules, and each module into submodules
and so on, until the sizes of the different leaf-level modules can be approximately E&»n.mmmu
To be able to predict the LOC count for the various leaf-level modules sufficiently mnnﬁmﬁm_w.
past experience in developing similar produets is very Lelpful. By using the estimation of m:.m_
lowest level modules, project managers arrive at the total size estimation. However. LOC as
a measure of problem size has several shorteomings:

e LOC gives a numerical value of problem size that can vary widely with individual codine
style — different programmers lay out their code in different ways. For example, onw
programmer might write several source instructions on a single line whereas another
might split a single instruction across several linics. OFf course, this problem can be easily
overcome by counting the language tokens in the program rather than the lines of code,
However, a more intricate problem arises because the wmmm.nr of a program depends on
the choice of instructions used in writing the program. Therefore, even for the same
problem, different programmers might come up with programs having different LOC
counts. This situation mo.mm not improve even if language tokens are counted in stead of
lines of code.))

e LOC is a measure of zum coding activity alone. On the other hand, a good Ec.EnE
size measure should consider the total .effort needed to specify, design, code, test, etc.

a..ﬁm not just the coding effort. LOC, however, focuses on the coding activity alone; it
merely computes the number of source lines in the final program. We have already seen-

that coding is only a small part of the overall software development, activities. It is also
wrong to argue that the overall product development effort is proportional to the effort
required in writing the program code. This is because even though the design might be
very complex, the code might be straightforward and vice versa. In such cases, code
size is a grossly improper indicator of the problem size.

° HWOQ measure ao:.mFﬁm u.oon_.v. -with the quality and efficiency of the code. Larger code
size does not necessarily E.ﬁ@ better quality or higher cfficiency. Some DIOgrammers
produce lengthy and complicated code as they do not make effective use of the available

instruction set. In fact, it is very likely that a poor and sloppily written piece of code

might have larger number of source instructions than & piece that is neat and efficient.

e LOC métric penalizes use of higher-level Programming, languages, code reuse, ete. The
paradox is-that if a programmer consciously uses several library routines, then the L.OC
count will be lower. This would show up as smaller program size. Thus, if managers
use the LOC count as a measure of the effort put in by different developers (that is

. productivity), they would be discouraging code reuse by developers! % .

o LOC metric measures the lexical complexity of a program and does not address the more
important but subtle issues of logical or structural complexities. Between two programs
with equal LOC count, & program having complex logic would require much mare effort
to develop than a program with very simple logic. To realize why this is so, consider the
effort required to develop a program having multiple nested loop and decision constructs
with another program having only sequential control flow.

e It is very difficult to accurately estimate LOC in the final product from the problem
specification. The LOC count can only be accurately computed only after the code

3.3 Metrics for Project Size Estimation 63

has been fully developed. Therefore, the LOC metric is of little use to the project
managers during project planning, since project planning is carried out even before sny
development activity has started. This possibly is the biggest shortcoming of the LOC
metric from the project manager's perspective.

3.3.2 Function Point Metric

Function point metric was proposed by Albrecht [1983]. This metric overcomes many of the
shortcomings of the LOC metric. Since its inception in late 1970s, function point miétric has
been slowly gaining popularity. One of the important advantages of using the function point
metric is that it can be used to easily estimate the size of a software product directly from the
problem specification. ThLis is in contrast to the LOC metric, where the size can be accurately
determined only after the produet has fully been;developed.

The conceptual idea behind the function point métric is that the size of a software product

. s directly dependent on the number of different functions or features it supports. A software

product supporting many features would certainly be of larger size than a product with less

. number of features. Each function when invoked reads some input data and transforms it to

the corresponding output data. For example, the query-book feature (see Figure 3.2) of a
Library Automation’ Software takes the name of the book ag input and displays its location
and the number of copies available. Similarly, ‘the issue book and the return book features
produce their output based on the corresponding input data. Thus, a computation of the
number of input and output data values to a system gives some indication of the number of
functions supported by the system.

Book-location

Book-name 3
g e R o | EEmm——

Output data

Input data

J

Figure 3.2: System function as a map of input data to output data.

Albrecht postulated that in addition to the number of .asic functions that a software
perfortus, the size is also dependent on the number of files and the number of interfaces.
Interfaces refer to the different mechauisms that need to be supported for data transfer with

84 Software Project Management

other external svstems. Besides using the mumber of input and output data values. function
point metric computes the size of a software product (in units of function points or FPs)
using three other characteristics of the product discussed above and shown in the following
expression.

Function point is computed in three steps. The first step is to compute the unadjusted
function point (UFP). In the next step, the UFP is refined to reflect the differences in the
complexities of the different parameters of the expression for UFP computation (shown be-
low}. In the third and the final step, FP is computed by further refining UFP to account for
the specific characteristics of the project that can influence the development effort.

UFP = (Number of inputs)*4 + (Number of outputs)+5 + (Number of inquiries)=4 +
(Number of files)*10 + (Number of interfaces)*10

The expression shows the computation of the unadjusted function points (UFP) as the weighted °
gum of these five problem characteristics. The weights associated with the five characteristics
were proposed by Albrecht empirically and was validated through data gathered from many
projects. :

The meaning of the different parameters of this expression is as follows:

1. Number of inputs: Each data item input by the user is counted: Data inputs should be
distinguished from user inguires. Inquiries are user commands such as print-account-balance.
Inquiries ave counted separately. It must be noted that individual data items input by the
user are not simply addedup to compute the number of inputs, but a group of related inputs
are considered as a single input. For example, while entering the data concerning an employee
to an employee payrol] software; the data items name, age, sex, address, phone number, ete.
are together considered as a single input. All these data items can be considered to be related,

since they pertain to a single employee. #

2. Number of outputs: The outputs considered refer to reports printed, sereen outputs.
error messages produced. etc. While computing the number of outputs the individual data
items within a report are not considered, but a set of related data items is counted as one

outpit.

‘3, Number of inquiries: Number of inquiries is the number of distinct. interactive queries
which can be made by the users. These inquiries are the user commands which.require specific
action by the system. :

4. Number of files: Each.logical file is counted. A Homwn& file implies a group of logically
related data. Thus, logical files include data structures and physical files. -

5. Number of interfaces: Here the interfaces considered are the interfaces used to exchange
information with other svstems. Examples of such interfaces are data files on, tapes. disks,
communication links with other systems. etc.

The computed UFP is refined in the next-step. The complexity level of each of the para-
meters are graded as simple. average. cr complex. The weights for the different parameters
can then he computed based on Table 3.1. Thus. rather than each input being computed as
four function points, very simple inputs can be computed as three function points and very
complex inputs as six function points.

3.3 Metrics for Project Size Estimation 65

Table 3.1: Refinement of function point entities

Type Sumgle Average Complex
Input(I} 3 = 6
Output (O) 1 5 7
Inquiry (E) 3 4 6
Number of files (F) ¥ 10 15
Number of interfaces 3 7 10

; A technical complexity factor (TCF) for the project is computed and the TCF is multiplied
.s%. UFP to yield FP.The TE€F expresses the overall impact of various project parameters that
can influence the development effort such as high transaction rates, response time requirernents
scope for reuse, ete. Albrecht identified 14 parameters that cen influence the mm&_ouEmum
mm.o;. mmnr of these 14 -factors is assigned a value from 0 (not present or no :&:m...mni to €
?:onm.ﬁ.mcmun&. The resulting numbers are summed; yielding the total degree offinfinence
(DI). Now, TCF is computed as (0.654-0.01*DI). As:DI can vary from 0 to mp.,..,ﬁ.ﬂ.ﬁ wm.u.

<2<m.o&..o.mm8_.wu.Enwcu_wwmm?m:_E. .
b i . m mwmvuoaznﬁowc.mﬁm:aﬂow.,%gm.

mmmﬂ.E.o point metric. A major shortcoming of the function point measure is that it does not
.Swm.:.;o acconnt the algorithmic complexity of & software. That is, the function point metric
532«.@ assumes that the effort required to design and‘develop any two functionalities of the
system is the same. But, we know-that this is normally not true. The effort required to develop
any two m_E&oummamm may vary ‘widely. For example, in a library automation software the
create-member feature would be much simpler compared to the Homu..m.woauwmaoem&.www
mmmﬁ_:m. It only takes the number of functions that the system supports into noumEmuﬁwa. .
52_9% distinguishing the difficulty level of developing the various functionalities. To overcome
this problem, an extension of the function point metric called feature point metric has heen
proposed.) ‘

Feature point metric incorporates algoréthm 8829&5 as an extra parameter. This pa-
rameter ensures that the computed size using the feature point metric reflects the fact that
the more is the complexity of a function, the greater is the effort required to develop it and
therefore its size should be larger compared to simpler functions.) ’ %

Proponents of function point and feature point metrics claim that these metrics are
Jmmﬁmm-iamﬁmuamﬁ and can be easily computed from the SRS document during project
mw::ﬁm. whereas opponents QEB that these metrics are subjective and require a sleight of

and. An example of the subjective nature of the function point metric can be that the way
one would group logically related data items can be very subjective, For example consider
that nwnmg data employee-details consists of the emplovee name E& mSEoém address,
.:5.: it is possible that one can consider it as a single unit of data. Also someone else owm
consider the employees address as one unit and name as another. menmmoa,. there is mwmmmmﬁ

MMMMM for different project managers to arrive at different function point measures for the same
em.

66 Software Project Management

3.4 PROJECT ESTIMATION TECHNIQUES

Estimation of various project parameters is a basic project planning activity. The important
project parameters that are estimated include: project size, effort required to develop the
software, project duration and cost. These estimates not only help in quoting an appropriate
project cost to the customer but also form the basis for resource planning and scheduling.
There are three broad categories of estimation techniques:

1. Empirical estimation technigues

2. Heuristic techniques

3. Analytical estimation techuiques

In the following, we provide an overview of the different categories of estiration techniques.

3.4.1 Empirical Estimation Techniques

Empirical estimation techniques are based on making an educated guess of the project para-
meters. While using this technique, prior experience with development of similar products is
helpful. Although empirical estimation techniques are based on comunon sense, over the years,
different activities involved in estimation have been formalized to certain extent. We shall
discuss two such formalizations of the basic empirical estimation 3&55:@ in amnsoum 3.5.1
and 3.5.2. :

3.4.2 Heuristic Techniques

Heuristic techniques assume that the relationships among the different project parameters can
be modelled using suitable mathematical expressions. Once the basic (independent) parame-
ters are known, the other (dependent) parameters can be easily determined by substituting the
value of the basic parameters in the mathematical expression. Different heuristic estimation
models can be divided into the following two classes: single variable model and multivariable

model.

Single variable estimation models provide a means to estimate the desired characteristics of -

a problem, using some previously estimated basic (independent) characteristic of the software
product such as its size. A single variable estimation model takes the following form:

Estimated Parameter = ¢; # et

In the above expression, e is a characteristic of the software which has already been es-
timated (independent variable). Estimated parameter is the dependent parameter to be esti-
mated. The dependent parameter to be estimated could be effort, project duration, staff size,
etc. ¢; and d; are constants. The values of the constants ¢; and dy are usually determined
using data collected from past projects (historical data). The COCOMO model (discussed in
section 3.6.1), is an example of a single variable cost estimation model.

A multivariable cost estimation model takes the following form:

Estimated resource = ¢, * ep™ + e, % cp?

where ep;, epa, ... are the basic (independent) characteristics of the software alr=ady esti-
mated, and ¢y, ¢3, dy, dp. ... are constants. Multivariable estimation models are expected to

3.5 Empirical Estimation Techniques 67

give more accurate estimates compared to the single variable models, since a project parame-
ter is typically influenced by several independent parameters. The independent parameters
influence the dependent parameter to different extents. This is modelled by the constants ¢;,
g, di, da, ... Values of these constants are usually determined from historical data. The
intermediate COCOMO model discussed in section 3.6.2 can be considered to be an example
of a multivariable estimation model.

3.4.3 Analytical Estimation Techniques

Analytical estimation techniques derive the required results starting with certain basic as-
sumptions regarding the project. Thus, unlike empirical and heuristic techniques, analytical
techniques do have certain scientific basis. We shall discuss the Halstead'’s software science
in Section 3.7 as an example of an analytical amngmncm.f As we will see, Halstead’s software
science can be used to derive some interesting results, starting with a few simple assumptions.
Halstead’s software science is especially useful for estimating software maintenance efforts. In
fact, it outperforms both empirical 85 heuristic techniques when used for predicting woga
maintenance efforts.

3.5 EMPIRICAL ESTIMATION TECHNIQUES

We have already pointed out that empirical estimation techniques have over the years been -
formalized to cerfain extent, yet these are still essentially euphemisms for pure guess work.
Two popular empirical estimation techniques are: expert judgement and Delphi estimation
techniques.

3.5.1 Expert Judgement Technique

Expert judgement is one of the most widely used estimation techniques. In this technique, an
expert makes an educated guess of the problem size after analyzing the problem thoroughly.
Usually, the expert estimates the cost of the-different components (i:e. modules or subsystems) —
that would make up the system and then combines the estimates for the individual modules
to arrive at the overall estimate. However, this technique is subject to human errors and
individual bias. Also, it is possible that the expert may overlook some factors inadvertently.
Further, an expert making an estimate may not have experience and knowledge of all aspects
of a project. For example, he may be conversant with the database and user interface parts
but may not be very knowledgeable about the computer communication part.

A more refined form of expert judgement is the estimation made by a group of experts.
Estimation by a group of experts minimizes factors such as individual oversight, lack of fa-
miliarity with a particular aspect of a project, personal bias, and the desire to win contract
through overly optimistic estimates. However, the estimate made by a group of experts may
still exhibit bias on issues where the entire group of experts may be biased due to reasons such
as political considerations. Also, the decision made by the group may be dominated by overly
assertive members.

84 _Software Project Management

The first step in scheduling a software project involves identifying all the tasks necessary to
complete the project. A good knowledge of the intricacies of the project and the development -
process helps the managers to effectively identify the important tasks of the project. Next,
the large tasks are broken down into a logical set of small activities which would be assigned

_to different developers. The work breakdown structure formalism discussed in section 3.9.1 -
helps the manager to breakdown the tasks systematically.

After the project manager has broken down the tasks and created the work breakdown .-
structure, he has to find the dependency among the activities. Dependency among the different
activities determines the order in which the different activities would be carried out. If an
activity A requires the results of another activity B, then activity A must be scheduled after
activity B. In general, the task dependencies define a partial ordering among tasks, i.e. each
tasks may precede a subset of other tasks, but some tasks might not have any precedences

. ordering defined between them (called concurrent task). Let us discuss the dependency among
“theactivities-are represented in the-form-of amactivity network: s

Once the activity network representation has been worked out, resources are allocated ..o
to each activity. Resource allocation is typically done using a Gantt chart. After resource 3
allocation is done, a PERT (Project Evaluation and Review Technique) chart representation is-
developed. The PERT chart representation is suitable for project monitoring and contrel. Th
work breakdown structure, activity:network, Gantt and PERT-charts are discussed further:s
For task scheduling, the project manager needs to decompose the project tasks into a set of
activitics. The time frame when each activity is to be performed is to-be determined. The end
of each activity is called a milestone. The project manager tracks the progress of a project
by menitoring the the timely completion of the milestones. Tf he observes that the milestones
start getting delayed, then he has to carefully control the activities, so that the overall deadline
can still be met.

3.9.1 ., Work Breakdown Structure

Work Breakdown Structure (WBS) is used to decompose a given task set recursively into small

 activities. WBS provides a notation for representing the major tasks needed to be carried out
in“order to solve a problem. The root of the tree is labelled hy the problem name. Each
node of the tree is. broken down infg smaller activities that are made the children of the node.
Each activity is recursively decomposed into sriallar sub-activities until at the leaf level, the
activities requires approximately two weeks to develop. Figure 3.7 represents the WBS of an
MIS (Management Information System) software.

While breaking down a task into smaller tasks, the manager has to make some hard de-
cisions. If a task is broken down into a large number of very simall activities, these can be
distributed to a larger number of developers. If the activity ordering permits that solutions
to these can be carried out indepeudently. Thus, it becomes possible to develop the product
faster (with the help of additional manpower of conrse!). Therefore, to be able to complete a
project in the least amount of time, the manager needs to break large tasks into smaller ones,
expecting to find more parallelism. However, it is not useful to subdivide tasks into units which
take less than a weelc or two to execute. Very fine subdivision means that a disproportionate
amount of time must be spent on preparing and revising various charts.

85
.0 Scheduling

MIS =
application 2

- |Requirements}
.| specification |-

Database
part

jraphical user

i . ¢ :
{ Database | - |Graphical user
- interface part

i part .| mterface part

3%

Figure 3.7: Work breakdown structure of an MIS problem.

3.9.2 Activity Networks and Critical Path Method

WBS representation of a project is transformed into an activity doaio.mw by representing ac-
tivities identified in WBS along with their interdependencies. An activity H.umnéo% shows mu:o
different activities making up a project,. their estimated aﬁnwﬂo.mm, and ES&@HQ.&SQ&.
Fach activity is represented by a rectangular node and the duration of the activity is shown
alengside each task. : g " . . i

Managers can estimate the time durations for the &mmnm.n« tasks in moﬁuww ways. One
possibility is that they can empirically assign durations to ;Emnwnn tasks. ..Hu?m however is
not a good idea, because software developers often resent mﬁcw unilateral aoﬂm_oum.gmoamedﬁ
some managers prefer to estimate the time for various mnﬁSaB themselves. Many B.msmmm_.m
believe that an aggressive schedule motivates the developers to do a better .&.E faster job. On
the other hand, careful experiments have shown that unrealistically aggressive schedules noti
only“canse developers to compromise on intangible quality m.mvmm_..ma but wwmo are a cause Mo_.
schedule delays. A possible alternative is to let each engineer himself nms_dwﬁ.m the time : om
an activity he can be assigned to. This approach can help to accurately estimate the tas
durations without ereating undue schedule pressures.

Critical Path Method (CPM) B .
From the activity network representation. following analysis can be made. H:.a minimum Q.E,m
(MT) to complete the project is the maximum of all paths from start to m.Emr. H”Mg »m~~:9M
start (ES) time of a task is the maximum of all paths from the start to this nmmw 2 PKMA
start time is the difference between MT and the maximum of all cwﬂwm.mHoB this a.mmx to the
finish. The eatliest finish time (EF) of a task is the sum of the earliest start time of the

86 Software Project Management

task and the duration of the task.' The latest finish (LF) time of a task can be obtained by
subtracting maximum of all paths from this task to finish from MT. The slack time (ST) is
LS-EF and equivalently can be written as LF-EF. The slack time (or float time) is the total
time that a task may be delayed before it will affect the end time of the project. The slack
time indicates the flexibility in starting and completion of tasks. A critical task is one with a
zero slack time. A path from the start node to the finish node containing only critical tasks
is called a critical path. Thus, any path whose duration equals MT is a critical path. As a
result, there can be more than one critical path for a project. .
The project parameters for different tasks for the MIS problem is shown in Table 3.6.

Table 3.6: Project parameters computed froin activity network

Task . ES EF LS LF ST

Specification 00 16 0 15 0

Design database 15 15 60 0

Design GUI part 15 45 90 120 75

Code data base 60 165 60 165 O

Code GUI part 45 90 120 165 75

Integrate and test 165 285 165 285 0

Write user manual 15 75 225 285 210

2

The critical paths are all the paths whose duration equals MT. The eritical path in
Figure 3.8 is shown with a thick arrow.

3.9.3 Gantt Charts

Gantt charts are mainly used to allocate resources to mnsﬁ&mm.u The resources allocated to
activities include staff, hardware, and software. Gantt charts (named after its developer Henry
Gantt) are useful for resource Ewuhmnm.u> Gantt chart is a special type of bar chart where
each bar represents an activity. The bars are drawn along a time line. The length of each bar
is proportional to the duration of time planned for the corresponding activity.

Gantt charts used in software project management are actually an enhanced version of the
standard Gantt charts.} In the Gantt charts used for ‘software project management, each bar
consists of a white part and a shaded part. The shaded part of the bar shows the length of
time each task is estimated to take. The white part shows the slack time, that is, the latest
time by which a task must be finished. JA- Gantt chart representation for the MIS problem of
Figure 3.8 is shown in Figure 3.9.

3.9.4 PERT Charts

PERT (Project Evaluation and Review Technique) charts consist of a network of boxes and
arrows. The boxes represent activities and the arrows represent task dependencies. PERT
chart represents the statistical variations in the project estimates assuming a normal distrib-
ution. Thus, in a PERT chart instead of making a single estimate for each task, pessimistic,
likely, and optimistic estimates are made. The boxes of PERT charts are usually annotated

3.9 Scheduling 87

Design - Code

database el database part
part 45 105
Integrate
and test !
120 / " Finish | |

Specification
T 15

Code
— GUIpart
45

Write user
& i CE manual e
VS R ek

Figure 3.8: Activity network representation of the MIS problem.

"« Write uger - -
. __manual £y

Figure 3.9: Gantt chart representation of the MIS problem.

with the pessimistic, likely, and optimistic estimates for every task. Since all possible comple-
tion times betwoen the minimum and maximum duration for every task has to be considered,
there is not one but many critical paths, depending on the permutations of the estimates for

88 Software Project Management

each task. This makes critical path analysis in PERT charts very complex. A critical path
in.a PERT chart is shown by using thicker arrows. The PERT chart representation of the
MIS problem of Figure 3.8 is shown in Figure 3.10. PERT charts are a more sophisticated
form of activity chart. In activity diagrams only the estimated task durations are represented.
Since, the actual durations might vary from the estimated durations, the utility of the activity
diagrams are limited.

Design
database |gmdatabase part|
, part 40, 45, 60[-.| 95, 105, 120 |

memuw».m

" |7| Specification|, _ and test FED RS
| 12,15,20 R —
S Design |51 Code 0

e GUI part [—» GUI part 3
S 24, 30,38 | 7| 38,45,52

& Write .52.
manual 7
50, 60,70 | ¢

Figure 3.10: PERT chart representation of the MIS problem.

Gantt chart nmvmgmcaumou of a E&og.mn&mmaa is helpful in planning the utilization of -

resources, while PERT chart is useful for monitoring the timely progress of activities. Also,
. it is easier to identify parallelractivities in a project using a PERT chart. Project, managers
need to identify the parallel activities in a project for assignment to different developers.

“3.9.5 Pro .ﬂm,,c» Monitoring and Control

Once the project gets Eamnsmw,/@m project manager has to monitor the project continucusly
to ensure that it is progressing as per the plan. The project nianager designates certain
key events suchwas .completion of some important activity.as:milestones. For example, a
milestone can be the completion and review of the SRS document, e¢ompletion of the coding
and unit testing, etc. Once a milestone is reached, the project manager can assume that some
measurable progress has been made. If any delay in reaching a milestone is predicted, then
corrective actions might have to be taken. This may entail reworking all the schedules and
.producing a fresh schedule.

“As already* mentioned, the PERT charts are’ especially nseful in project moritoring and
control. A path in this graph is any set of consecutive nodes and edges in this graph from
the starting node to the last node. A critical path in this graph is a path along which every
milestone is eritical to meeting the project deadline. In other words, if any delay occurs along
a critical path, the entire project would get delayed. It is, therefore, necessary to identify
all the critical paths in a schedule—adhering to the schedules of the tasks appearing on the
critical paths is of prime importance to meet the delivery date. Please note thatthere may be

R
. $ids i

3.10 Organization and Team Structures 89

r

more than one critical path in a schedule. The tasks along a critical path are called eritical
lasks. If necessary, a manager may switch resources from a noncritical task to a critical tagk
so that all milestones along the critical path are met.

Several tools are available which can help you to figure out the critical paths in an unre-
stricted schedule, but figuring out an optimal schedule with resource limitations and with a
large number of paralle] tasks is a very hard problem. There are several commercial prod-
ucts for automating the scheduling techniques are available. Popular tools to help draw the
schedule-related graphs include the MS-Project software available on personal computers.

3.10 OND>ZHN>HHOZ AND TEAM STRUCTURES

‘Usually, every software development organization handles ssveral projects at any timme: Soft-
ﬂﬁm.ﬁmwb».mpzoum wmwﬁu_ different teams of developers to handle different software projects.
Thus, there are two important issues: How is the organization as & wholc structured? And,
how are the individual project teams structured? There are a few standard ways in s.Eom
software organizations and teams can be structured. .

3.10.1 Organization Structure

There are essentially two broad ways in which a software development organization can be
structured: functional format and project format. In the project format, the development
staff are divided based on the project for which they work for (see Figure 3.11). In the
functional format, the development staff are divided based on the functional group to ‘which
they belong to.. The different projects borrow developers from functional groups for specific

H.ww.wmm o:rmuao.wmgpcmaﬂcg;msdo Em?ﬁoaou&wscvdcg;mnoBv_mﬂobb:&m
Phase. y

TR EE : o i R TR 2 ,..w. T R At J
* Top management
Project| oow W Project.
team'l team n’
management

() gsn organization BEEE gsoua organization

Figure 3.11: Schematic representation of the functional and project organization.

94 . Software Project Management

conception held by managers as evidenced in their staffing, planning and scheduling practices,
is the assumption that one software engineer is as productive as another. However, experiments
have revealed that there exists a large variability of productivity between the worst and the
best software developers in a scale of 1 to 30. In fact, the worst developers may sometimes even
reduce the overall productivity of the team, and thus in effect exhibit negative productivity.
Therefore, choosing good software developers is crucial to the success of a project.

3.11.1 Who is a Good Software Engineer?

In the past, several studies concerning the traits of a good software engineer have been carried
out. All these studies roughly agree on-the following attributes that good mom.amhm developers
should possess:

—

; vaSEm to mwmn»BpSn techniques, i.e. familiarity with software engineering E.EQE?
. Good technical knowledge of the project areas EQEEa knowledge)

. Good programming abilities

. Good communication skills like oral, aﬁ.mﬁou and interpersonal skills

. High motivation

Sound knowledge of mEaEdm:nmw of computer stience

Intelligence :

Ability. to work in a team

. Discipline

- RPN I~ S~ T S OR O

Studies show that these attributes vary as much as 1:30 for poor and bright candidates.
An experiment conducted by Sackman [1968] shows that the ratio of coding hour for the worst
to the best programmers is 25:1, and the ratio of debugging hours is 28:1. Also, the ability of
a software engineer to arrive at the design of the software from a problem description varies
greatly with respect to the parameters of quality and time.

Technical knowledge in the area of the project (domain knowledge) is an important factor
determining the productivity of an individual for a particular project, and the quality of the
product that he develops. A programmer having a thorough knowledge of datahase applica-
tions (e.g. MIS) may turn out to be a pgor data communication developer. Lack of familiarity
with the application areas can result in low productivity and poor quality of the product.

Since software development is a group activity, it is vital for a software developer to possess
three main kinds of communication skills: oral, written and interpersonal. A software developer
not only needs to effectively communicate with his teammates (e.g. reviews, walk throughs,
and other team communications) but may also have to communicate with the customer to
gather product requirements. Poor interpersonal skills hamper these vital activities and often
show up as poor quality of the product and low productivity. Software developers are also
required at times to make presentations to the managers and to the customers. This requires a
different kind of communication skill (oral communication skill). A software developer is also
expected to document his work (design, code, test, etc.) as well as write the users’ manual,
training manual, installation manual, maintenance manual, etc. This requires good writien
communication skill.

Motivation level of software developers is another crucial factor contributing to his work
quality and productivity. Even though no systematic studies have been reported in this regard,

it i s

) gl

by ik i

L8

2100 i D R
2 Pty

3.12 Risk Management 95

it is generally agreed that even bright developers may turn out to be poor performers when
they lack motivation. An average developer who can work with a single mind track can
outperform other developers. But motivation is a complex phenomenon requiring careful
control. For majority of software developers, higher incentives and better working conditions
have only limited affect on their motivation levels, Motivation is to a great extent determined
hy personal traits, family and social backgrounds, etc.

3.12 'RISK MANAGEMENT

A risk is any anticipated unfavourable event or circumstance that can occur while a project
is undersay. We should distinguish between a risk which is a problem that might dgecur from
the problems currently being faced by a company. If a risk becomes true, the anticipated
problem becomes a reality and is no more a risk. If a risk becomes real, it can adversely affect
the project and hamper the successful and timely 8522? of the project. Therefore, it is
necessary for the project manager to anticipate and identify different risks that a project is
suseeptible to, so that contingency plans can be prepared to contain each risk. In this context,
risk management aims at reducing the impact of all kinds of risks that might affect a project.
Risk management consists of three essential activities: risk identification, risk assessment, and
risk containment. We discuss these three activities in the following subsections.

w.uw..u Risk Identification

The project manager needs to anticipate the risks in the project as early as possible so that
the impact of the risks can be minimized by making effective risk management plans. So, early
risk identification is important. Risk identification is somewhat similar to listing down your
nightmares. For example, you might be worried whether the vendors whom you have asked to
develop certain modules might not complete their work in time, whether they would turn in
poor quality work, whethersome of your key personnel might leave the organization, etc. All
such risks that are likely toaffect a project; must be identified and listed.

A project can be affected by & large variety of risks. In order to be able to systematically
identify the important risks which might affect a project, it is necessary to categorize risks
into different classes. The project manager can then examine which risks from each class are

relevant to the project. There are nrumm main categories of risks which can affect a software
project as follows:

Project risks

Project risks concern various forms of budgetary, schedule, personhel, resource, and customer-
related problems. An important project risk is schedule slippage. Since, software is intangible,
it is very difficult to monitor and control a software project. For any manufacturing project
such as manufacturing of cars the project manager can see the product taking shape. He
can for instance, see that the engine is fitted, after that the doors are fitted, the car is getting
painted, ete. Thus, he can easily assess the progress of the work and control it. The invisibility
of the product being developed is an important reason why many software projects suffer from
the risk of schedule slippage.

96 ! Software Project Management

Technical risks

Technical risks concern potential design, implementation, interfacing, testing and mainte-
nance problems. Technical risks also include ambiguous specification, incomplete specification,
changing specification, technical uncertainty, and technical obsolescence. Most technical risks
occur due the development team’s insufficient knowledge about the product.

Business risks
This type of risks include risks of building an excellent product that no one wants, losing
budgetary or personnel commitments.

Example classification of risks in a project
Let us consider the satellite based mobile communication product which we considered in

can classify them appropriately as:

1. What if the project cost escalates to a large extent than what was estimated7—Project

Section 2.6 of Chapter 2. The project manager can identify several risks in this project. We

risk.
9. What if the mobile phones becomes too large for:people to conveniently carry?—Dusiness
risk

3. What if it is later found out that the level of radiation is harmiul to human being?—

Business risk
4. 'What if hand off between satellites becomes too difficult to implement?—Technical risk

In order to be able to successfully foresee and identify different risks that might affect a
software project, it is a good idea to have a company disaster list. This list would contain
all the bad events that have happened to software projects of the company over the years
including events that can be laid at the customer’s doors. This list can be read by the project
mangers in order to be aware of some of the risks that a project might be susceptible to. Such
a disaster list has been found to help in performing better risk analysis.

3.12.2 Risk Assessment

The objective of risk assessment is to rank the risks in terms of their damage causing potential.

For risk assessment, first=each risk should be rated in two ways:

1. The likelihood of a risk coming true (7).
9. The consequence of the problems associated with that risk (s).

"Based on these two factors, the priority of each risk can be computed:
p=r%s

where, p is the priority with which the risk must be handled, r is the probability of the risk
becoming true, and s is the severity of damage caused due to the risk becoming true. If all
identified risks are prioritized, then the most likely and damaging risks can he handled first
and more comprehensive risk abatement procedures can be designed for these risks.

Y

3.12 Risk Management 97

3.12.3 Risk Containment

After all the identified risks of a project are assessed, plans must be Emam‘ao first contain the
most damaging and the most likely risks. Different risks require different containment proce-
Q_E.mm. In fact, most risks require ingenuity on the part of the project manager in tackling zu.m
risks. There are three main strategies to plan for risk containment:

Avoid the risk

m.wmw.m can be avoided in several ways, such as discussing with the customer to change the
nmpcw.amamuﬂm to to reduce the scope of the work, giving incentives to the developers to avoid
the risk of manpower turnover. ,

Transfer the risk

HEmmﬂﬁ@@ESwémmmEumga%wwnoﬁwonmsﬁam«.m_ovon_c%mmrwa@E@gu&_mmumﬁ.
ance cover, and so on; =S - e R . _-.. =

Risk reduction

This involves planning ways to contain the damage due to a risk. For example 'if there is risk
that some key personnel might leave, new recruitment may be planned. The mﬁoﬂ important
thing to do in addressing technical risks is to build a prototype that tries out pieces of the
technology mrm« you are trying to use. For example, if you are. using a compiler for identifying
N“Emb&m in the user interface, you would have to construct a moEvmwn for a small language
To choose between the different strategies of handling a risk, the project manager must
consider the cost of handling the risk and the corresponding reduction of risk. For this, we
may compute the risk leverage of the different risks. Risk leverage is the difference E.nmmw
exposure divided by the cost of reducing the risk. More formally, .

Risk exposure before reduction — Risk exposure after reduction

Risk leverage =
Cost of reduction

.m<mn Euocmw.s.m m.mm.ns..mma three broad ways to handle any risk, but still risk handling re-
quires a lot of ingenuity on the part of the project manager. As an example, let us consider the

eptions available to contain an important type of risk that occurs in many software projects

= 35.& of schedule m.:v?wmm. Risks relating to schedule slippage arise primarily due to the
intangible nature of software. For a project such as building a house, the progress can easily

he seen and assessed by the project manager. If he finds that the project is lagging behind

2.5.5 corrective actions can be initiated. Considering that software development per se is in-
visible, the first step in managing the risks of schedule slippage, is to increase the visibility of
the software product. Visibility of a software product ‘can be increased by producing relevant
aOn.Edmbam during the development process wherever meaningful, and getting these documents
reviewed by an appropriate team. Milestones should be placed at regular intervals through a
mcm_wﬁ:m engineering process to provide a manager with regular indication of progress. Com-
pletion of a phase of the development process being followed need not be the only milestones
Every phase can be broken down to reasonable-sized tasks and milestones can be scheduled moa.
these tasks too. A milestone is reached, once documentation produced as part of a software

98 Software Project Management

engineering task is produced and gets successfully reviewed. Milestones need not be placed for
every activity. An approximate rule of thumb is to set a milestone every 10 to 15 days.

3.13 SOFTWARE CONFIGURATION MANAGEMENT

The results, (also called as the deliverables) of a large software development effort typically
consist of a large number of objects, e.g. source code, design document, SRS document, test
document, user’s manual, ete. These objects are usually referred to and modified by a number
of software developers throughout the life cycle of the software. The state of all these objects
at any point of time is called the configuration of the software product. The state of each
_deliverable object; changes as development progresses and also as bugs are detected and fixed.

Software configuration management deals with effectively tracking and controlling the config- |
uration of a software product during its life cycle, ;

Before we discuss configuration management, we must be clear about the distinction be-
tween a version and & revision of a software product. A new version of a software is created

when there is significant change in functionality, technology, or the hardware it runs on, etc.

On the other hand, a new release is created if there is only a bug fix, minor enhancements to
the functionality, usability, etc. Even the initial delivery might consist of several versions and
more versions might be added later on. For example, one version of a mathematical computa-
tion package might run on Unix-based machines, another on Microsoft Windows, and so on.
As a software is released and used by the customer, errors are discovered that need correction.
Enhancements to the functionalities of the software may also be needed. A new release of
software is an improved system intended to replace an old one. Often systems are described
as version m, release n; or simple m.n. Formally, a history relation is version of can be'defined
between objects. This relation can be split into two subrelations is revision of and is variant of.
In the following, we first discuss the necessity of configuration management and subsequently
we discuss the configuration management activities and tools.

3.13.1 Necessity of Software Coufiguration Management

There are several reasons for putting an object under configuration management. But{ possi-
bly-the most important reason for configuration management is to control the access to the
different deliverable objects. Unless strict discipline is enforced regarding updation and stor-
age of different objects, several problems can appear. The following are some of the important
problems that can appear if configuration management is not used.

Inconsistency problem when the objects are replicated

Consider a scenario where every software developer has a personal copy of an object
(e.g. source code). As each developer makes changes to his local copy, he is expected to
intimate the changes that he has made to other developer, so that the changes in interfaces
are uniformly changed across all modules. However, many times a developer makes changes to
the interfaces in his local copies and forgets to intimate other teamrates about the changes.
This makes the different copies of the object inconsistent. Finally, when the product is in-

3.13 Software Configuration Management 99

tegrated, it does not work. Therefore, when several team members work on developing an
object, it is necessary for them to work on a single copy of the object, otherwise inconsistency
may arise.

Problems associated with concurrent access

Assume that only & single copy of a program module is maintained, and several developers are
working on it. Two developers may simultaneously carry out changes to the different portions
of the same module, and while saving overwrite each other. Though we explained the problem
associated with concurrent access to program code, similar problems can oceur for any other
deliverable object.

.Huwoimgm a stable development environment

When a project work is underway, the team members need a stable environment to make
progress. Suppose one is trying to integrate module A, with ‘the modules B and C. He cannot
make progress if developer of module C keeps changing Ow this can be especially frustrating
if & change to module C forces recompilation of module A. When an effective configuration
management is in place, the manager freezes the objects to form a base line. When any one
needs to change any of the objects under configuration control, he is provided with'a copy of
the base line item. The requester makes changes to his private copy. Only after the requester
is through with all modifications to his private copy, the configuration is updated and a new

*. base line gets formed instantly. This establishes a baseline for others'to use and depend on.
Also, baselines may be archived periodically (Archiving means copying to a safe place such as
a magnetic tape). ;

System accounting and maintaining status information

System accounting keeps track of who made a particular change to an object and when the
change was made.

Handling variants

Existence of variants of a software product causes some peculiar problems. Suppose you have
several variants of the same module, and find a bug in one of them. Then, it has to be fixed in

all versions and revisions. To do it efficiently, you should not have to fix it in each and every
~version and revision of the'software separately: R e ey S

3.13.2 Configuration Management Activities

Normally, a project manager performs the configuration management activity by using an
automated configuration management tool. A configuration management tool provides auto-
mated support for overcoming all the problems mentioned above. In mn&aor_ a configuration
management tool helps to keep track of various deliverable objects, so that the project manager
can quickly and unambiguously determine the current state of the prqject. The configuration
management tool enables the developer to change various components in a controlled manner.

Configuration management is carried out through two principal activities: X

* Configuration identification involves deciding which parts of the system should be

kept track of.
¢ Configuration control ensures that changes to a system happen smoothly.

CHAPTER 11

SOFTWARE RELIABILITY
AND QUALITY
- ——MANAGEMENT

Reliability of a software product is an important concern for most users. Users not ouly want
the products they purchase to be highly reliable, but for certain categories of products they
may even require a quantitative guarantee on the reliability of the product before making
their buying decision. This may especially be true for safety-critical and embedded software
products. However, as we discuss in this chapter, it is very difficult to aceurately measure the
reliability of any mow_sa.m product. One of the main problems encountered while quantitatively
measuring the reliability of a software product is the fact that reliability is observer-dependent.
That is, different groups of users may arrive at different reliability estimates for the same
product. Besides this, several other problems (such as freguiently changing reliability values
due to bug corrections) make accurate measurement of the reliability of a software product
difficult. We investigate these issueés in this chapter. Even though no metric to accurately
measure the reliability of a software product exists, we shall discuss some metrics that are
being used at present to quantify the reliability of a software product. We shall also address
the problem of veliability growth Eode:m and examine how to predict when (and if at all) a
givenlevel of reliability will be achieved. We shall also examine the statistical testing approach
to reliability estimation. In this chapter, we shall also discuss varicus issues associated with
Software Quality Assurance (SQA).

Software Quality Assurance (SQA) has emerged as oue of the most talked about topics in
recent years in software industry cireles. The major aim of SQA is to help an organization
develop high qualitvsoftware products in a-tepeatable manner. A software development organi-
zation can be called repeatable when its software development process is person-independent.
That is, the success of a project does not depend on who exactly are the team members of
the project. Besides, the quality of the developed software and the cost of development aré
important issues .n&&.mmmma by SQA. In this chapter. we first discuss a few important issues
concerning software reliability measurement and prediction before starting our discussion on
software quality assurance,

3

11.1 Software Reliability 371

11.1 SOFTWARE RELIABILITY

The reliability of a software product essentially denotes its trustworthiness or dependabil-
ity. Alternatively, the reliability of a software product can also be defined as the probability
of the product working correctly over a given period of time.

Intuitively, it is obvious that a software product having a large number of defects is un-
reliable. It is also very reasonable to assume that the reliability of a system improves, as the
mumber of defects in it is reduced. It would have been very nice if we could mathematically
characterize this relationship between reliability and the number of bugs present in the system
using a simple closed mo_.E expression. Unfortunately, it is very difficult to characterize the
observed reliability of & system in terms the number of latent defects in the system using
a simple mathematical expression. To get an insight into this issue, consider the following.
Removing errors from those parts of a software product that are very infrequently executed,
makes little difference to the perceived reliability of the product. It has been experimentally
observed by analyzing the behaviour of a large number of programs that 90% of the execution
time of a typical program is spent in executing only 10% of the instructions in the program.
The most used 10% instructions are.often called the core! of a program.” The rest 90% of
the program statements are called non-core and are on the aversge executed only for 10%
of the total execution time. It therefore may not be very surprising to note that removing
60% product, defects from the least used parts of a system would typically result in only 3%
improvement to the product reliability. It is clear that the quantity by which the overall relia-
bility of a program improves due to the correction of a single error depends on how frequently
the instruction having the error is executed. If an error is removed from an instruction that is
frequently executed (i.e. belonging to the core of the program), then this would show up as a
large improvement. to the reliability figure. On the other hand, removing errors from parts of
the program that are rarely used, may not cause any wvvnmemgm change to the reliability of

‘the product.

Based on the above discussion, we can ‘say that reliability of a product depends not only -
on the number of latent errors but also on the exact location of the errors. Apart from
this, reliability also depends on how the product is used, or on its execution profile. If the
users execute only those features of a program that are correctly implemented, none of the
errors ‘will be exposed and the perceived reliability of the product will be high. On the other
hand, if only those functions of the software which contain errocs are invoked, then a large
mumber of failures will be observed and the perceived reliability of the system will be very
low. Different’ categories of users of a software product typically execute different functions
of a software product. For example, for a library antomation software the library members
would use functionalities such as issue book, search book, ete. on the other hand, the librarian
would normally execute features such as create member, create book record, delete member
record, etc. So defects which show up, for the librarian, may not show up for th: members.
Suppose the functions of a Library Automation Software which the library members use are
error-free; and functions used by the librarian have many bugs. Then, these two categories
of users would have very different opinions about the reliability of the software. Therefore,
tae reliability figure of a software product is observer-dependent, and it is very difficult to
absolutely quantify the reliability of the product.

1To determine the core and non-core parts of a program, you can use a commonly available tool called a
profiler. On Unix platforms, a tool called prof is normally available for this purpose.

372 Software Reliability and Quality Management,

.wmm.mn_ on the above discussions, we can summarize the main reasons that make software
reliability more difficult to measure than hardware reliability:

e The reliability improvement due to fixing a single bug depends on where th i
located in the code. e e Bl

o The perceived reliability of a software product is observer-dependent.

® The reliability of a product keeps changing as errors are-detected and fixed.

. In the following subsection, we shall discuss why software reliability measurement is a
harder problem than hardware reliability measurement.

11.1.1 Hardware versus Software Reliability

An mﬂvonpwna nwgwawan feature that sets hardware and software reliability issues apart is
the difference between their failure patterns. T

Hardware components fail due to very different reasons as compared to software components.
Iuwmimqo components fail mostly due to wear and tear, whereas software components fail due .
to bugs. :)

A logic gate may be stuck at 1 or 0, or a resistor might short circuit. To'fix a hardware
mwcz.. one has to either replace or repair the failed part. In contrast, a software product would
continue to fail until the error is tracked down and either the design or the code is changed
to mx o.um bug. For this reason, when a hardware part is repaired, its relisbility would be
B.mESmuoa at the level that existed before the failure occurred; whereas when a software
failure is repaired, the reliability may either increase or decrease (reliability may decrease if a
bug mx introduces new errors). To put this fact in a different perspective, hardware reliability
study is concerned with stability (for example, the inter-failure times remain constant). On the
.052. hand, the aim of software reliability study would be reliability growth (that is, increase
in inter-failure times). .

A comparison of the changes in failure rate over the product lifetime for & typical hardware
product as well as a software product are sketched in Figure 11.1. Observe that the plot of
change of reliability with time for a hardware component [Figure 11.1(a)] appears like & bath
tub. For a software component the failure rate is initially high, but decreases as the faulty
n.oEvoﬁoEm are identified are either repaired or replaced. The system then enters its useful
life, aw.m..m the rate of failure is almost constant. After some time (called product lifetime)
the major components wear out, and the failure rate increases. The initial failures are usually
covered eE.c_.umr manufacturer’s warranty. A corollary of this observation (though a digression
m.o.B our topic of discussion) is that it may be unwise to buy a product (even at a good discount
to its face value) towards the end of its lifetime. That is, one need not feel happy to buy a ten
year old car at one tenth of the price of a new car, since it would be near the rising edge of the
bath tub curve, and one would have to spend unduly large time, effort, and money on repairing
and a.ua up as the loser. In contrast to the hardware products, the software product show
Fm Fmrmm« failure rate just after purchase and installation [see the initial portion of the plot
in w_m.E.m 111 (b)]. As the system is used, more and more errors are identified and removed
resulting in reduced failure rate. This error removal continues at a slower pace during the

11.1 Software Reliability 373

useful life of the product. As the software becomes obsolete no more error correction occurs
and the failure rate remains unchanged.

Figure 11.1: Change in failure rate of a product.

11.1.2 Reliability Metrics o

The reliability requirements for different categories of software products may be different. For
this reason, it is necessary that the level of reliability required for a software product should
be specified in the SRS (software requirements specification) document. In order to be able to
do this, we need some metrics to quantitatively express the reliability of a software product.
A pood reliability measure should be observer-independent, so that different people can agree
on the degree of reliability a system has. However, in practice, it is very difficult to formulate
a metric using which precise reliability measurement would be possiblé. In the absence of such
measures, we discuss six metrics that correlate with reliability as follows:

1. Rate of OCcurrence Of Failure (ROCOF)"ROCOF measures the frequency of oc-
currence of failures. ROCOF measure of a software product can be obtained by observing

the behaviour of arsoftware product in-operation-over-a-specified-time-interval-and-then— ——

caleulating the ROCOF value as.the ratio of the total number of failures observed and
the duration of observation. However, many software products do not run continuously
(unlike a car or a mixer), but deliver certain service when a demand is placed on them.
For example, a library software is idle until a book issue request is made. Therefore, for
a typical software product such as a payroll software, applicability of ROCOF is very
limited. .

2. Mean Time To Failure (MTTF). MTTF is the time between two successive failures,
averaged over & large number of failures. To measure MTTF, we ean record the failure
data for n failures. Let the failures occur at the time instants ¢, s, ..., f. Then, MTTF
can be calenlated as Y., mﬂwqmﬁ It is important to note that only run time is considered
in the time measurements. That is, the time for which the system is down to fix the
error, the boot time, etc. are not taken into account in the time measurements and the
clock is stopped at these times.

374 Software Reliability and Quality Management

3. Mean Time To Repair (MTTR). Once failure occurs, some time is required to fix
the error. MTTR measures the average time it takes to track the errors causing the
failure and to fix them.

" 4. Mean Time Between Failure (MTBF), The MTTF and MTTR metrics can be
combined to get the MTBF metric: MTBF=MTTF{+MTTR. Thus, MTBF of 200 hours
indicates that once a failure occurs, the next failure is expected after 300 hours. In this
case, the time measurements are real time and not the execution time as in MTTE.

5. Probability Of Failure On Demand (POFOD). Unlike the other metrics discussed,
this metric does not explicitly involve time measurements. POFOD measures the likeli-
hood of the system failing when a service request is made. For example, a POFOD of
0.001 would mean that 1 out of every 1000 service requests would result in & failure. We

— have already mentioned that the reliability of a software product should be determined
through specific service invocations, rather than making the software rin continuously.
Thus, POFOD metric is very appropriate for software products that are not required to
run continuously.

6. Awvailability. Availability of a system is a measure of how likely would. the system be
available for usg.over a given period of time. This metric not only considers the number
of failures occiirring during-a time interval; but also takes into m%o__i tho repair time
(down time) of & eystem when a failure necurs. T ._iciaie 18 important for systems such
as telecommunication systems, and operating systems, and .mE_uwamma controllers, etc.
which are supposed to be never down -and where repair and restart time are significant
and loss of service during that time cannot be overlooked.

. All the above reliability metrics suffer from several shortcomings as far as their use in
software reliability measurement is concerned. One of the reasons is that these metrics are
centred around the probability of occurrence of system failures, but take no account of the
consequences of failures. That is, these reliability models do not distinguish the relative sever-
ity of different failures. Failures which are transient and whose consequences are not serious
are in practice of little concern in the operational use of a software product. These types of
failures can at best be minor irritants. On the other hand, niore severe types of failures may
render the system Sn&_% unusable. In order to cstimate the reliability of a software product
more wnnﬁﬁm_? it; is necessary Lo :mmzm«, varicus types of failures. Please note that the dif-
ferent classes of failures may not be E:Ewc‘\ exclusive. The classification i< based on widely
different set of criteriz. As a result, a failure type can at the same time belong to more thau
one class. A scheme of classification of failures is as follows:

1. Transient: Transient failures oceur only for certain input values while invoking a function
of the system. f

2, Permanent: Permanent failures occur for all input values while invoking a function of the
system.

3. Recoverable: When a recoverable failure occurs, the system can recover without having
to shutdown and restart the system (with or without operator intervention).

4, Unrecoverable. In unrecoverable failures, the system may need to be restarted.

11.1 Software Reliability 375

5. Cosmetic: These classes of failures cause only minor irritations, and do not lead to incorrect
results. An example of a cosmetic failure is the situation where the mouse button has to be
clicked twice instead of once to invoke a given function through the graphical user interface.

11.1.3 Reliability Growth Modelling

A reliability growth model is a mathematical model of how software reliability improves as
errors are detected and repaired.

A reliability growth model can be used to predict when (or if at all) a particular level of reliability
is likely to be attained, Thus, reliability growth modelling can be used to determine when to
stop. testing to attain a given E_mmz_m@ level.

Ego:mw geveral different ErmvEQ growth models have been proposed, in ﬁE.m.emﬁ we
will discuss-only two very simple reliability growth models.

Jelinski and Moranda model

The mEE&.. reliability growth model is a step function model where it is assumed that the
reliability increases by a-constant increment each time an error is«detected and repaired. Such
a model is shown in Figure 11.2. However, this simple model of reliability which Eﬁrﬂaz
assumes that all errors contribute equally to reliability growth, is highly unrealistic since we
already know that correction of different errors contribute differently to reliability growth.

Figure 11.2: Step function model of reliability growth.

Littlewood and Verall’s model

This model allows for nezative reliability growth to reflect the fact that when a repair is carried
out. it may introduce additional errors. It also models the fact that as errors are Ewp:.ma
the average improvement to the product reliability per repair decreases. It treats an error’s
contribution to reliability improvement to be an independent random variable having Gamma
distribution. This distribution models the fact that error corrections with large contributions
to reliability growth are removed first. This represents diminishing return as test continues.

There are more complex reliability growth.models, which give more accurate approxima-
tions to the reliability growth. However, these models are out of scope of this text.

376 Software Reliability and Quality Management

11.2 STATISTICAL TESTING

Statistical testing is a testing process whose objective is to determine the reliability of the
product rather than discovering errors. The test cases designed for statistical testing with an
entirely different objective from those of conventional testing. To carry out statistical testing
we need to first define the operation profile of the product. .

Operation profile

Different categories of users may use a software product for very different purposes. For
example, a librarian might use the library automation software to create member records
delete member records, add books to the library, ete; whereas a library member might use &
software to query about the availability of a book, and to issue and return books. Formally,
we can define the operation profile of a software as the probability of & user selecting the

different functionalities of the software. If we denote the set of various functionalities offered .

by the mochwnm by {f:}, the operational profile would associate with each.function {f:} with
the ?.ov&w&@ with which an average user would select { fi} as his next function to use. Thus,
we can think of the operation profile as assigning a probability value p; to each functionality
fi of the software.)

How to define the operation profile for a product?

We need to divide the input data into a number of input classes, For Emvﬁu_@. for a graphical
editor software, we might divide the input into data associated with the edit, vabﬁ and
file operations. We then need to assign a probability value to each input class; to signify the
probability for an input value from that class to be selected. The operation profile of a software
product can be determined by observing and analyzing the usage pattern of the software by a
number of users.

Steps in statistical testing

The first step is to determine the operation profile of the software. The next step is to generate
a set, of test data corresponding to the determined operation profile. The third step is to apply
the test cases to the software and record the time between each failure. After a statistically
significant number of failures have been observed, the reliability can be computed.

For accurate results, statistical testing requires some fundamental assumptions to be sat-
isfied. It requires a statistically significant. number of test cases to be used. It further HS..Enom
that a small percentage of test inputs that are likely to cause system failure to be included.
Now let us discuss the implications of these assumptions.

.? is straightforward to generate test cases for the common types-of inputs, since one can
easily write a test case generator program which can automatically generate these test cases.
However, it is also required that a statistically significant percentage of the unlikely inputs
should also be included in the test suite. Creating these unlikely inputs using a test case

11.3 Software Quality 377

accurate compared to those of other methods discussed. However, it is not easy to perform
the statistical testing satisfactorily due to the following two reasons. There is no simple and
repeatable way of defining operation profiles. Also, the number of test cases with which the
system is to be tested should be statistically significant.

11.3 SOFTWARE QUALITY

Traditionally, the quality of a product is defined in terms of its fitness of purpose. That is,
a good quality product does exactly what the users want it to do, since for almost every
product, fitness of purpose is interpreted in terms of satisfaction of the requirements laid
down in the SRS document. Although fitness of purpose is a satisfactory definition of quality
for many products such as a car, a table fan, a grinding machine, etc.—fitness of purpose is
not a wholly satisfactory definition of guality for moms.wmm products. To give an example of
why this is so, consider a software product that is functionally correct. That is, it correctly
performs all the functions that have been specified in its SRS document. Even though it may
be functionally correct, we cannot consider it to be a quality product, if it has an almost
unusable user interface. Another example is that of a product which does everything that
the users wanted, but has an almost incomprehensible and unmaintainable code. Therefore,
the traditional concept of quality as fitness of purpose for software products is not wholly
satisfactory. . R

The miodern view of a quality associates with a software product several quality factors
such as the following: .
1. Portability: A software product is said to be portable, if it can be easily made to work

in different hardware and operating system environments, and easily interface with external
hardware devices and software products.

2. Usability: A software product has good usability, if different categories of users (i.e. both
expert and novice users) can easily invoke the functions of the product:

3. Reusability: A software product has good reusability; if different modules of the product
_can easily be reused to develop new products.

4. Correctness: A software_product. i
SRS document have been correctly implemented.

5. Maintainability: A software product is mainiainable, if errors can be easily corrected as
and when they show up, new functions can be easily added to the product, and the function-
alities of the product can be easily modified, ete.

11.4 SOFTWARE QUALITY MANAGEMENT

uirements as specified in the

generator is very difficult. e
s SYSTEM
Pros and cons of statistical testing =3 .
— : . = A quality manag t syst ften referred t ualit t is the princi t -
w“mmwmwmnﬂ a%wEm M :os.w oum_mw o.ouomuﬁwnm oﬂnmmo:ﬁ parts of the system that are most likely = omw 53% by onmmswm%%m Wuw.mmﬁwuﬁwmmﬂwm vwomhumﬁ Evm\v.m,wmmmwﬂwwmvmh MHMM%MNHMMM
ed. Therefore, it results ¢ i = 2 2
in & system that the users can find to be more reliable (than B2y In the following, we briefly discuss some of the important issues associated with a quality

actually it is!). Also, the relinbility estimation arrived by using statistical testing is more = system
= :

378 Software Reliability and Quality Management

e A quality system is the responsibility of the organization as a whole. However, every
organization has a separate quality department to perform several quality system ac-
tivities. The quality system of an organization should have the full support of the top
management. Without support for the quality system at & high level in & company, few
members of staff will take the quality system seriously.

o The quality system activities encompass the following:

— Auditing of projects

— Review of the quality system

— Development of standards, procedures, and guidelines, etc.

— Production of reports for the top management summarizing the effectiveness of the
quality system in the organization.

A good quality system must, be well documented. Without a properly documented quality
system, the application of quality controls and procedures become ad hoc, resulting in large
variations in the quality of the products delivered.” Also, an undoecumented quality system sends
clear messages to the staff about the attitude of the organization towards quality assurance.
International standards such as ISQ 9000 provide guidance on how to organize a quality system.

11.4.1 m<o_=$..ou of Quality Systems

Quality systems have rapidly evolved over the last six decades. Prior to World War II, the usual
method to produce quality products was to inspect the finished products to eliminate defective
products. For example, a company manufacturing nuts and bolts would inspect its finished
goods and would reject those nuts and bolts that are outside certain specified tolerance range.
Since-that time, quality systems of organizations have undergone-fotr stages of evolution as
shown in Figure 11.3. The initial product inspection method gave way to quality control (QC)
principles. .

Quality Control (QC) focuses not only on detecting the defective products and eliminating
them, but also on:determining the causes behind the defects, so that the product rejection
rate can be reduced. . ; |

———rl

Thus, quality- control aims at correcting the causes of errors and not just rejecting the
“defective products.” The next breakthrough in quality systems; was the development of the
Quality Assurance (QA) Principles. .

;mcmmmnv«maamo«aoamsn:m:Qmwm:B:nmmmayu»x.m_._o_.mwsmnmmo:.m._u_.onmmmmmm_‘mmoon
and are followed rigorously, then the products are bound to be of good quality.

The modern quality assurance paradigm includes guidance for: recognizing, defining, ana-
lyzing, and improving the production process. Total quality management (TQM) advocates
that the process followed by an organization must continuously be improved through process
measurements. TQM goes a step further than quality assurance and aims at continuous process
improvement. TQM goes beyond documenting processes to optimizing them through redesign.
A term related to TQM is Business Process Reengineering (BPR). BPR aims at reengineering

11.5 ISO 9000 379

the way business is carried out in an organization, whereas our focus in this text is reengji-
neering of the software development process. From the above discussion, we can say that over
the last six decades or s0, the quality paradigm has shifted from product assurance to process
assurance (see Figure 11.3).

Quality control (QC)

"

Owbu..n\ wmmﬁ.mbem Q4)

h

11.4.2 Product Metrics versus Process Metrics

All modern quality systems lay vavmmmm on collection of certain product and process metrics
during product development. Let us first understand the basic differences between vnoaﬁna.

and process metrics.

Product metrics help measure the characteristics of a product being developed, whereas process
metrics help measure how a process is performing.

Examples of product metrics are LOC and function point to measure mﬁw‘ PM @.mnmou-
month) to measure the effort required to develop it, months to measure the time -.mnE.nma to
develop the product, time complexity of the algorithms, etc. Examples of process metrics are
review effectiveness, average number of defects found per hour of inspection, average defect

- correction time, productivity, average number of failures detected during testing per LOC,

aumber of lateut defects per line of code in the developed product.

11.5 ISO 9000

International Standards: Organization (ISO) is a consortium of 63 no,cbamm mm.nwgmwwa to
formulate and foster standardization. ISO published its 9000 series of standards in 1987.

< TS EERy ARG GG AllJivinedilalivll
1 2
Emotional Response to Management of Change:
Change Preconditioned by Plan/Policies/Proce-
Iwmnrmu.wcba dures to Promote
|mn:nm,no: Positive Attitude Toward
—Experience Change
o 4 6 ¥ , 3
. Pariicipation Attitude
in Implementation Towards
of Change Change
3 ' 4
>.nnmw5- Perception
bility of of Impagt- 16—
L Change e ﬁﬂwnmm;.

Fig. 16.5 Cycle in Aftitude Towards Change

Change Strategies

Training and orientation, descrii e .
2 » described earlier in this chapter, are a key to favou
attitudes towards change. P y rabie

. mwmﬁn ways for management to smooth fransition ‘to new information technology
€ Lo

B >w&m.m ﬂmwoummvmmﬁ for change to upper level managers who possess the
orgamzational power to legitimize change.
FaEsgaal S ae)

= &wnn@ individuals-in the organization who must learn new behaviours,
ww_zm. or wu.oﬁna.ma because of the change and schedule training for them.

£ =<.ou<.w H.am_.ﬂma in the development of new systems by giving them an
active mo_m in identifying problems and planning solutions.

@ Open lines Om.ooEE::mommon between employees and management. For-
cxample, provide forums where employees can voice their concerns about
the new technology.

® Avoid sscrecy about the new system. Publicize information rsgarding system

changes.

Pace conversion to allow 2 readjustment period to the new system.

Implement new systems in modules.

Alter job titles to reflect increased responsibility.

Waima ideas that will improve thronghput.

moSBoE mﬁmaﬁ.% 80 that new procedures are easy to learn and reference.

.Lama« establish in advance the demarcations of authority that will exist’

following changeover. ¥

o Upgrade Em. work environment following change, incorporating
recommendations of human factors studies.

Show sympathy and be receptive to complaints following conversion.
Give job counselling.

Arrange job transfers. <
Call a hiring freeze until all displaced personnel are reassigned.

Provide separation pay.

Organize group therapy.

Initiate morale-boosting activities, such as a company newsletter and social
events,

The key to success of these sirategies lies in management’s ability to demonstrate
support for employees adversely affected by the change. Manag«-vur STOUIA AISO
exhibit patience and understanding when = <rstuption and dislocation of change
produces anxiety ssd WCHEON even among those not directly involved with the
news system. It is largely a skill in handling interpersonal relationships that determines
whether a firm can absorb technological advances in the field of computing.

“fESTING

O

Wm.m.m:.aw is a quality control measure. The information system under development,

or parts of the system, are exercised to see if the results satisfy performance
specifications and match anticipated results. If not, the reason(s) are traced,
modifications are made, and the system is retested—a cycle that is repeated until
testers are satisfied with ncwﬁ@

The underlying premise of testing is that correct results can be predicted and
that the validity of a system can be ascerained by comparing results generated
during a test against predicted results. Key elements of the system are identified,
then duplicated and checked in a production environment that maiches the
environment in which the sysiem will operate once conversion takes place. Test
cases are selected and test data are generated to simulate live, full-sized files and
transaction volume. If planning lacks thoroughness and organization so that key
elements of the system are not checked at some point, the system inay run
successfully during the test cycle yet fail when placed in operation. The problem
is that a complete definition of test cases is virtually impossible and that exhaustive
testing can pass the limits of practicality.

@wﬁ ¢clements must be checked?

The hardware on which the new system will operate.

The operating system that will be used. _

The assembler or compiler that will produce the object code.
The data to be processed.

Applications software. i
Data entry methods.

® Operating procedures.

8 Cutput interpretation.

In general, sysiems arz checked for reliability, effectiveness, file m_nﬂomax$

380 Software Reliability and Quality Management

11.5.1 What is ISO 9000 Certification?

ISO 9000 certification serves as a reference for contract between independent parties. In
particular, a company awarding a development contract can form his opinion about the possible
vendor performance based on whether has the vendor has obtained ISO 90000 certification or
not. In this context, the ISO-9000 standard specifies the guidelines for maintaining a quality
system. We have already seen that the guality system of an organization applies to all its

activities related to its products or services. The ISO standard addresses both operational

aspects (that is, the process) and organizational aspects such as responsibilities, reporting,
etc. In a nutshell, ISO 9000 specifies a set of recommendations for repeatable and high quality
product development. It is important to realize that ISO 9000 standard is a set of guidelines
for the production process and is not directly concerned about the product itself.

ISO 9000 is a series of three standards: ISO 9001, ISO 9002, and ISO 9003.

The ISO 9000 series of standards are based on the premise that if a proper process is followed
for production, then good quality products are bound to follow automatically.

The types of software companies to which the different ISO standards apply are as follows,

1. ISO 9001: This standard applies to the organizations engaged in design, development,
production, and servicing of goods. This is the standard that is applicable to most software
development organizations. u ;

2. ISO 9002: This standard applies to those organizations which do not design products but
are only involved in production. Examples of this category of industries include steel and car
manufacturing industries who buy the product and plant designs from external sources and
are involved in only manufacturing those products. Therefore, IS0 9002 is not applicable to
software development organizations.

3. ISO 9003: This standard applies to organizations involved only in installation and SmmEm
of products.

11.5.2 ISO 9000 for Software Industry .
ISO 9000 is a generic standard that is applicable to a large gamut of industries, starting from

a steel manufacturing industry to a service rendering company. Therefore; many of the clauses.

of the ISO 9000 documents are written using generic terminologies, and it is very difficult to
interpret them in the context of software development organizations. An important reason
behind such a situation is the fact that software development is in many respects radically
different from the development of other types of products. Two major differences between
software development and development of other kinds of products are as follows:

e Software is intangible and therefore difficult to control. It means that software would
not be visible to the user until the development is complete and the software is up and
running. Tt is difficult to control and manage anything that you cannot see and feel. In
contrast, in any other type of product manufacturing such as car manufacturing, you
can see a product being developed through various stages such as fitting engine, fitting
doors, etc. Therefore, it becomes easy to accurately determine how much work has been
completed and to estimate how much more time will it take.

(R E PRSP RAPNRCE PYSHAINGN 22t

ST TP RN

11.5 ISO 9000 381

e During software development, the only raw material consumed is data. In contrast, large
quantities of raw materials are consumed during the development of any other product.
As an example, consider a steel making company. The company would consume large
amounts of raw material such as iron ore, coal, lime, manganese, etc. Not surprisingly
then, many clauses of ISO 9000 standards are concerned with raw material control. These
clauses are obviously not relevant for software development organizations.

Due to such radical differences between software and other types of product development, it
was difficult to interpret various clauses of the original ISO standard in the context of software
industry. Therefore, ISO released a separate document called ISO 9000 part-3 in 1991 to help
interpret the ISO standard for software industry. At present, official guidance is inadequate 4
regarding the interpretation of various clauses of ISO 9000 standard in the context of software-
industry and one has to keep on cross referencing the ISO 9000-3 document.

11.5.3 Why Get ISO 9000 Certification?

There is a mad scramble among software development organizations for obtaining ISO cer-
tification due to the: benefits it offers. Let us examine some of the benefits that accrue to
organizations obtaining ISO ecertification.

¢ Confidence of customers in.an organization increases when the organization qualifies
for ISO 9001 certification. This is especially true in the international market. In fact,
many organizations awarding international software development contracts insist that
the development organization have ISO 9000 certification. For this reason, it is vital for
software organizations involved in software export to obtain ISO 9000 certification.

o ISO 9000 requires a well-documented software production process to be in place. A well-
documented software production process contributes to repeatable and higher quality of
the developed software.

e ISO 9000 makes the‘development process focused;fefficient and cost-effective.

¢ ISO 9000 certification points out the weak pointsiof an organizations and recommends
remedial action.

e ISO 9000 sets the basic framework for the developmerit of an optimal process and TQM.

11.5.4 How to GetISO 9000 Certification?

An organization intending to obtain ISO 9000 certification applies to a ISO 9000 registrar for
registration. The ISO 9000 registration process consists of the following stages:

1. >Eu=nmzo= stage: Once an organization decides to go for ISO 9000 Sﬁmmnwﬁo? it ap-
plies to a registrar for registration.

2. Pre-assessment. During this stage the registrar makes a rough assessment of the organi-
zation.

3. Document review and adequacy audit: During this stage, the registrar reviews the
documents submitted by the organization and makes suggestions for possible improvements.

4. Compliance audit: During this stage, the registrar checks whether the suggestions made
by it during review have been complied to by the organization or not.

382 Software Reliability and Quality Management

5. Registration: The registrar awards the ISO 9000 certificate after successful completion
of all previous phases.

6. Continued surveillance: The registrar continues monitoring the organization periodi-
« cally.

ISO mandates that a certified organization can use the certificate for corporate advertisements
but cannot use the certificate for advertizing any of its products.

This is probably due to the fact that the ISO 9000 certificate is issued for an organization’s
process and not to any specific product of the organization. An organization using ISO certifi-
cate for product advertisements faces the risk of withdrawal of the certificate. In India, ISO

9000 certification is offered by BIS (Bureau of Indian Standards), STQC (Standardization,

Testing, and Quality Control), and IRQS (Indian Register Quality m%wamﬁv IRQS has heen .

accredited by the Dutch council of certifying bodies (RVC).

11.5.5 Summary of 1SQ,9001 Requirements

A summary of the main requirements of ISO 9001 as they relate of software development are
as follows. anﬁou numbers in brackets correspond to those in the standard itself:

Management responsibility (4.1)

e The management must have an éffective quality policy.

The responsibility and authority of all those whose work affects quality must be defined
and documented,

¢ A management nmvammmunmacm_ Emmvmbaond of the Lgmuowﬁpmcn process, must be respon-

sible for the quality system. This requirement probably has been put down so that the .

" person responsible for the quality system can work in an unbiased manner.

The effectiveness of the quality system must be periodically reviewed by Ei;m
D:wrﬁ% System (4.2) .
A quality system must be EmEnE,uom Pca aonE:oE&

%

Contract reviews (4.3)

Before entering into a contract, an organization must review the contract to ensure that it
is understood, and %mp the organization has the necessary capability for carrying out its
abligations.

Design control (4.4)
e The design process must be properly controlled, this includes eontrolling coding also.
This requirement means that a good configuration control systein must be in place.
e Design inputs must be verified as adequate.
e Design must be verified.
e Design output must be of required quality.
o Design changes must be controlled.

11.5 ISO 9000 383

Document control (4.5) . .

e There must be proper procedures for document approval, issue and removal.
e Document changes must be controlled. Thus, use of some configuration management
tools is necessary.

Purchasing (4.6)
Purchased material, including bought-in software must be checked for conforming to require-
ments.

Purchaser supplied product (4.7)
Material supplied by a purchaser, for example, client-provided software must be properly man-
aged and checked.

Product identification (4.8) ;
The product must Lie identifiable at all stages o ! the process. In softwarét rms this méar-
configuration management.

Precess control:(«.9)
e The development must be properly managed.
e Quality requirement must be identified in a qualify plan.

Inspection and testing (4.10)

In software terms this requires effective testing, i.e. unit testing, integration testing and sys-
tem testing. Test records must be maintained.

Inspection, measuring and test equipment(4.11)

If integration, measuring, and test equipment are used, they must be properly maintained and
calibrated.

Inspection and test status (4.12)

The status of an item must be identified. T software terms :E Evrg configuration man-
agement and release control.

Control of non-conforming product (4.13)

In software terms, this means keeping untested or faulty software out of the released product,
or other places whether it might cause damage.

Corrective action (4.14)

This requirement is both about correcting errors when found, and also investigating why the
errors occurred and improving the process to prevent occurrences. If an error occurs despite
the quality system, the system needs improvement.

Handling (4.15)
This clause deals with the storage, packing, and delivery of the software product.

384 Software Reliability and Quality Management

Quality records-(4.16)
Recording the steps taken to control the quality of the process is essential in order to be able
to confirm that they have actually taken place.

Quality audits (4.17)
Audits of the quality system must be carried out to ensure that it is effective.

Training {4.18)

Training needs must be identified and met,

* Various ISO 900 requirements are largely common sense. Official guidance on the inter-
pretation of ISO 9001 is inadequate at the present time, and taking expert advice is usually
worthwhile.

11.5.6 Salient Features of ISO 9001 Requirements

In section 11.4.5, we pointed out the various requirements-for the ISO 9001 certification. We
can summarize the salient features all the the requirements as follows:

1. Document control: All documents concerned with the development of a software prod-
uct should be properly managed, mcnwoﬂga and controlled. This requires a configuration
management system to be in place.

2. Planning: Proper plans should be vnm,vwﬂoa and then progress against these plans should
be monitored.

3. Review: Important documents across all phases should be independently checked and
reviewed for effectiveness and correctness.

4. Testing: The product should be tested against specification.

5. Organizational aspects: Several organizational m.m_umnﬁm should be mh&.&mm& e.g. man-
agement reporting of the quality team.

11.5.7 ISO 9000-2000

ISO revised the quality standards in the year 2000 to fine tune the standards. The rajor
changes include a mechanism for continuous process improvement. There is also an increased
emphasis on the role of the top management, including establishing a measurable objectives
for various roles and levels of the organization. The new standard recognizes that there can
be many processes in an organization.

11.5.8 Shortcomings of ISO 9000 Certification

Even though ISO 9000 is widely being used for setting up an effective quality system in an
organization, it suffers from several shortcomings. Some of these shorteomings of the ISO 9000
certification process are the following:
e ISO 9000 requires a software production process to be adhered to, but does not guarantee
the process to be of hizii quality. It also does not give any guideline for defining an
appropriate process.

A

A ARG 24 A bl

11.6 SEI Capability Maturity Model 385

e ISO 9000 certification process is not foolproof and no international accredition ageney
exists. Therefore, it is likely that variations in the norms of awarding certificates can
exist among the different accredition agencies and also among the registrars.

o Organizations getting ISO 9000 certification often tend to downplay domain mxvm;mmm
and the ingenuity of the developers. These organizations start to believe that since a
good process is in place, the development results are truly person-independent. That is,
any developer is as effective as any other developer in ..omnmou.EEm any particular software
develcpment activity. In manufacturing industry, there is a clear link between process
quality and product quality. Once a process is calibrated, it can be run again and again
producing quality goods. Many areas of software development are so specialized that
special expertise and experience in these areas (domain expertise) is required.* Also,
unlike in case of general product Ewu&mgcwmnm. ingenuity and effectiveness of personal
practices play an important part in determining the results produced by a developer.
In other words, software development is a Qmﬂw«ﬁ process and E&Sacm._ skills and
experience are Evgg

e ISO 9000 does not automatically lead to continuous process improvement. In other
- words, it does not automatically lead to TQM.

11.6 - SEI CAPABILITY MATURITY MODEL

SEI Capability Maturity Model (SEI CMM) was proposed by Software Engineering Institute
of the Carnegie Mellon University, USA. CMM is patterned after the pioneering work of Philip
Crosby who published his maturity grid of five evolutionary stages in adopting quality practices
in his book “Quality is Free” [Crosby, 79).

The Unites States Department of Defence (US DoD) is the largest buyer of software prod-
uct. It often faced difficulties in vendor performances, and had to many times live with low
quality products, late delivery and cost escalations. In this context, SET CMM was originally
developed toréssist the US Department of Defence (DoD)in software scquisition. The ratio-
nale was to include the likely contractor performance as asfactor in contract awards. Most of
the major DoD contractors began CMM-based process improvement initiatives as they vied
for DoD contracts. It was observed that the SEI CMM model helped organizations to improve

the quality of.the software they developed-and theréfore adoption of SEI CMM model -had

significant business benefits. Gradually, many commercial organizations began to adopt CMM
as a framework for their own internal improvement initiatives.

In simple words, CMM is a reference model for apprising the software process maturity
into different levels. This can be used to predict the most likely outcome to be expected from
the next project that the organization undertakes. It must be remembered that SEI CMM
can be used two ways—capability evaluation and software process assessment. Capability
evaluation and software process assessment differ in motivation, objective, and the final use
of the result, Capability evaluation provides a way to assess the software process capability
of an organization. Capability evaluation is administered by the contract awarding authority,
and therefore the results would indicate the likely contractor performance if the contractor is '
awarded a work. On the other hand, software process assessment, is used by an . : ganization
w.th the objective to improve its own process capability. Thus, the latter type of assessment
is for purely internal use by a company.

CHAPTER 13

SOFTWARE MAINTENANCE

Many students and practising engineers have a preconceived bias against software mainte-
nance work. The mention of the word maintenance brings up the image of a screw driver

. wiclding mechanic with sciled hands Lolding onto a bagful of spare parts. It would be the

g

o s

objective of this chapter to clear up this misnomer, provide some intuitive understanding of the
software maintenance projects, and to familiarize you with the latest techniques in software
maintenance.

.momewa maintenance denotes any changes made to a software product after it has been
delivered to the customer. Maintenance is inevitable for almost any kind of product. However,

“most products need maintenance due to the wear and tear caused by use. On the other hand,

software prodnets do not need maintenance on this count, but need maintenance to correct
errors, enhance features, port to new platforms, etc.

In Section 13.1, we examine some general issues concerning maintenance projects.
In Section 13.2, we discuss some basic ideas about software reverse engineering. In
Section 13.3, we discuss two software maintenance process models which attempt to system-
atize the software development effort, and finally we discuss some concepts involved in cost
estimation of maintenance efforts.

13.1 CHARACTERISTICS OF SOFTWARE
MAINTENANCE

\
In this section, we first classify the different maintenance efforts ifito a few classes. Next, we
discuss some general characteristics of the maintenance projects. We also discuss some mvmni
problems associated with maintenance projects.

Software maintenance is becoming an important activily of a large nuniber of organizations.
This is no surprise, given the rate of hardware obsolescence, the immortality of a software prod-
uct perse, and the demand of the user community to see the existing software products run
on newer platforms, run in newer environments, and/or with enhanced features. When the
hardware platform changes, and a software product performs some low-level functions, main-
tenance is necessary. Also, whenever the support environment of a software product changes,
E:.W software product requires rework to cope up with the newer interface. For instance, a
software product may need to be maintained when the operating system changes. Thus, every
software product continues to evolve after its development through maintenance efforts.

13.1 Characteristics of Software Maintenance 405

13.1.1 Types of Software Maintenance
Software maintenance can be required for three main reasons as follows:

1. Corrective: Corrective maintenance of a software product is necessary either to rectify
the bugs observed while the system is in use.

2. Adaptive: A software product might need maintenance when the customers need the
product to run on new platforms, on new operating systems, or when they need the product
to interface with new hardware or software.

3. Perfective: A software product needs maintenance to support the new features that users
want it to support, to change different functionalities of the system according to customer
demands, or to enhance the performance of the system.

13.1.2 Characteristics of Software Evolution

Lehman and Belady*have studied the characteristics of evolution of several software products
[1980]. They have expressed their observations in the form of laws. Their important laws
are presented in the following, But a word of caution here is that these are generalizations
and may not be applicable to specific cases and also most of these observations concern large
software projects and may not be appropriate for the maintenance and evolution of very small
products.

Lehman’s first law
A software product must change continually or become progressively less useful. Every software

_ product continues to evolve after its development through maintenance efforts. Larger products

'stay in operation for longer times because of higher replacement costs, and therefore, tend to
incur higher maintenance efforts. This law clearly shows that every product irrespective of
how well-designed must undergo maintenance. In fact, when a product does not need amy
more maintenance, it is a sign that the product is about to.be retired/discarded. This is in
contrast to the common intuition that only badly designed products need maintenance. In
fact, good products are maintained and bad products are thrown away.

Lehman’s second law

The structure of a program tends to degrade as mere and more maintenance is carried out on
it. The reason for the degraded structure is that when you add a function during maintenance,
you huild on top of an existing program, often in a way that the existing program was not
intended to support. If you do not redesign the system, the additions will be more complex
that they should be. Due to quick-fix solutions, in addition to degradation of structure, the
documentations becoine inconsistent and become less helpful as more and more maintenance
is carried out. -

Lehman’s third law

Over a program'’s lifetime, it rate of development is approximately constant. The rate of
development can be quantified in terms of the lines of code written or modified. Therefore,
this law states that the rate at which code is written or modified i3 approximately the same
during development and maintenance.

406 Software Maintenance

13.1.3 Special Problems Associated with Software Maintenance

Software maintenance work currently is typically much more expensive than what it should
be and takes more time than required. The reasons for this situation are the following;

Software maintenance work in organizations is mostly carried out using ad hoc techniques.
The primary reason being that software maintenance is one of the most neglected areas of
software engineering. Even though software maintenance is fast becoming an impertant area of
work for many companies as the software products of yester years, still software mainfenance
is mostly being carried out as fire-fighting operations, rather than through systematic and
plauned activities. ?

Software maintenance has a very poor image in industry. Hranmmo_..m. an organization often
cannot employ bright engineers to carry out maintenance work. Even though maintenance
suffers from a poor image, the work involved is often more challenging than development
work. During maintenance it is necessary to thoroughly understand some one else’s work, and
then carry out the required modifications and extensions,

Another problem associated with maintenance work is that the majority of software prod-
ucts needing maintenance are legacy products. Though the word legacy implies “aged” soft-
ware, but there is no agreement on what exactly is a legacy system. It is prudent to define
a legacy system as any software system that is hard to maintain: The typical problems asso-
_ ciated with legacy systems are poor documentation, unstructured (spaghetti code with ugly
control structure), and lack of personnel knowledgeable in the product. Many of the legacy
systems were developed long time back. But, it is possible that a recently developed system
having poor design and documentation can be considered to be a legacy system.

13.2 SOFTWARE REVERSE ENGINEERING

Software reverse engineering is the process of recovering the design and the requirements
specification of a product from an analysis of its code, The purpose of reverse engineering is
to facilitate maintenance work by improving the understandability of a system and to produce
the necessary documents for a legacy system. Reverse engineering is becoming important,
since legacy software products lack proper documentation, and are highly unstructured. Even
well-designed products become legacy software as their structure degrades through a series of
maintenance efforts. o 3

The first stage of reverse engineering usually focuses on carrying out cosmetic changes to
the code to improve its readability, structure and understandability, without changing any
of its functionalities. A way to carry out these cosmetic changes is shown schematically in
Figure 13.1. A program can be reformatted using any of the several available prettyprinter
programs which layout the program neatly. Many legacy software products are difficult to com-
prehend with complex control structure and unthoughtful variable names. Assigning mean-
ingful variable names is important because we had seen in Chapter 9 that meaningful variable
names is the most helpful code documentation. All variables, data structures, and functions
should be assigned meaningful names wherever possible. Complex nested conditionals in the
program can be replaced by simpler conditional statements or whenever appropriate by case
statements.

After the cosmetic changes have been carried out on a legacy software, the proces of
extracting the code, design, and the requirements specification can begin. These activities are

N tsem hit R

S g

M ekl

13.3 Software Maintenance Process Models 407

Requirements specification |
e |
Design
A
v. . Module specification
s
) :

Figure 13.1: A process model for reverse engineering.

schematically shown in Figure 13.2. In order to extract the design, a full understanding of the
code is needed. Some automatic tools can be used to derive the data flow and moﬁ,ﬁd_ flow
diagram from the code. The structure chart (module invocation sequence mbmu data Epmngm_.w
among modules) should also be extracted. The SRS document can be written once the f
code has been thoroughly understood and the design extracted.

Simplify
conditions

Remove GOTOs

Figure 18.2: Cosmetic changes carried out before reverse engineering.

13.3 SOFTWARE MAINTENANCE PROCESS
MODELS

Before discussing process models for software maintenance, we Ewmm..”.c. pn.w._vﬁc various
activities involved in a typiesi software maintenance project. The activities involved in a
software maintenance project are not unique and depend on several factors such as the extent

408 Software Maintenance

of modification to the product required, (the resources available to the maintenance team. the
conditions of the existing product (e.g. how structured it is, how well documented it is, etc.).
the expected project risks, etc. When the changes needed to a software product are minor and
straightforward, the code can be directly medified and the changes appropriately reflected in
all the documents.

However, more elaborate activities are required when the required changes are not so
trivial. Usually, for complex maintenance projects for legacy systems, the software process
can be represented by a reverse engineering cycle followed by a forward engineering cycle with
an emphasis on as much reuse as possible from the existing code and other documents.

Since the scope (activities required) for different maintenance projects vary widely, no
single maintenance process model can be developed to suit every kind of maintenance project.
However, two broad categories of process models can be proposed. The first model is preferred
-—for-projects-involving-small reworks-where the-code-is changed directly and the changes are
reflected in the relevant documents later. This maintenance process is graphically presented
in Figure 13.3.

Gather change p
requirements, 5
Analyse change

requirements

Devise code change

strategies
Apply code change .
strategies to the old code

.G.ﬁn_ﬂom documents

Integrate and test

Figure 13.3: Meintenance process model 1.

In this approach, the project starts by gathering the requirements for changes. The require-
ments are next analyzed to formulate the strategies to be adopted for code change. At this
stage, the association of at least a few members of the original development team goes a long
way in reducing the cycle time; especially for projects involving unstructured and inadequately
documented code. The availability of a working old system to the maintenarnce engineers at
the maintenance site greatly facilitates the task of the maintenance team as they get a good
insight into the working of the old system and also can compare the working of their modified
system with the old system. Also, debugging of the reengineered system becomes easier as the
program traces of both the systems can be compared to localize the bugs.

13.3 Software Maintenance Process Models 409

The second model is preferred for projects where the amount of rework required is signifi-
cant. This approach can be represented by a reverse engineering n%o_m. followed by a forward
engineering cycle. Such an approach is also known as mo?imam. Hmm_um..:mmugm. ‘This process
model is depicted in Figure 13.4. The reverse engineering cycle is required for legacy products.
During the reverse engineering, the old code is analyzed (abstracted) to extract the module

Change requirements

Néw requiremetit . :
-+ specification: i

AL

A ST =5
T = %
Module: " ; Module
T ; specification
PEs

specification

Figure 13.4: Maintenance process model 2.

specifications. The module specifications are then analyzed to Eomcnm. the .a&ﬁb. The de-
sign is analyzed (abstracted) to produce the original _.mn&noh—mus.m specification. H.E.w change
requests are then applied to this requirements %mn.&@.&@b. to arrive at the new requirements
specification. At this poinf a forward engineering is carried 9,: .ﬁw produce the new code.
At the design, module specification,:and coding a substantial nm,ﬁm.m is BE.wm. ?05 the reverse
engineered products. An important advantage of this approach is that it produnces a miore
structured design compared to what the original product E:.r produces good documentation,
and very often results in increased efficiency. The efficiency improvements are brought about
by a more-efficient design. However, this approach is more costly than the first wvnamgz An
empirical study indicates that process 1 is preferable when the amount of rework is no more
than 15% (see Figure 13.5). Besides the amount of rework, several other factors might affect
the decision regarding using process model 1 over process model 2 as follows:

o Reengineering might be preferable for products which exhibit a high failure rate.

e Reengineering might also be preferable for legacy products having poor design and code
structure.

410
Software Maintenance

Figure 13.5: Empirical estimation of maintenance cost versus percentage rework. .

 13.4 ESTIMATION OF MAINTENANCE COST

cMM»_ME m»&m.n pointed out that maintenance efforts require wvo_: 60% of _&5 total life cycle
cost, for a anp_ software praduct. However, maintenance costs vary widely from one appli-
S.a-om domain to another. For embedded systems, the maintenance cost can be as much as 2

to 4 times the development cost. -
w.o&.ﬁ. moma proposed a formula for estimating maintenance costs as part of his COCOMO
%&Qﬁwﬂg model. Boehm's maintenance cost estimation is made in terms of a quantity
.~ cnw ; mo mﬂ“ﬂa Emﬂw_.”nwa .HKBWM omm,nu_,v. Boehm defined ACT as the fraction of a software

e 2 o .
i w. ergo change during a typical year either through ad-
ACT = K .BQQ&L& +K SQQQ_S&
KLOCiota

Where, K LOC,44.4 is the total kilo lines of source code add i i
;) e b ed during maintenance. K LOG,
is the SWE KLOC deleted during maintenance. Thus, the code that is changed, should _uMh =
counted in both the code added and code deleted. .

Hrmmub:&&gmmnnwmmo>0n,mm5&mm. .
s e Av v&ds&_gm ﬂ.oa development cost, to arrive at

Maintenance cost = ACT x Development cost

Fmgmma Babguw.uom cost estimation models, however, give only approximate results because
y do not take into account several factors such as experience level of the engineers, and
familiarity of the engineers with the product, hardware requirements, software complexity, ete.

e T Ly L I PPN P,

13.4 Estimation of Maintenance Cost 411

SUMMARY

o In this chapter, we discussed some fundamental concepts associated with software main-
tenance activities.

o Maintenance is the most expensive phase of the software life cycle and therefore it is
usually cost-effective to invest in time and effort while developing the product and to
emphasize on maintainability of the product to reduce the maintenance costs.

o We discussed the activities in reverse engineering and then discussed two maintenance
process models. We also discussed the applicability of these two process models to
maintenance projects.

« We highlighted the salient points in costing maintenance projects.

EXERCISES

1. What are the different types of maintenance that a software product might need? Why
are these maintensnce required?, :

2. Explain why every software system must undergo maintenafice or progressively become
less useful. : ks

3. Discuss the process models for software maintenance and indicate how you would select
an appropriate maintenance model for a maintenance project at hand. P

4. State whether the following statements are TRUE or FALSE. Give reasons for your
answer.

(s) Legacy software products are those products which have been developed long time

.back. ,
(b) Corrective maintenance is the type of mainiepance that is most frequently carried
out on a typical software produet.
5. What do you mean by the term software reverse engineering? Why is it required?
Explain the different activites undertaken during reverse engineering.
6. What do you mean by the term SGIEWATE TCCNEIGEHNE! Wyttt required?———————

7. If a software product costed Rs. 10,000,000/~ for development, BBE_R the annual
maintenance cost given that every year approximately 5% of the code needs modification.
Identify the factors which render the maintenance cost estimation inaccurate.

8. What is a legacy software product? Explain the problems one would encounter while
maintaining a legacy product.

CHAPTER 14

SOFTWARE REUSE

Software products are expensive. Therefore, software project managers are always worried

- abont-the hich-cost—of sofsware-development; and-are-desperately.Jooking for. way-outs to

cut development cost. A possible way to reduce development cost is to reuse parts from
previously developed software. In addition to reduced development cost and time, reuse also
leads to higher quality of the developed products since the reusable components are ensured
to have high quality. A reuse approach that is of late gaining prominence is componeni-
based development. Component-based software development is different from the traditional
software development in that software is developed by assembling software from off-the-ghelf
components. g

Software development with reuse is very similar to a modern hardware engineer building
an electronic circuit by using standard types of ICs and other components. In this chapter,
we will review the state of art in software reuse.

141 WHAT CAN BE REUSED?

Before discussing the details of reuse techniques, it is important to deliberate about the kinds
of the artifacts associated with software developrment that can be reused. Almest all artifacts
associated with scoftware development. including project plan-and. test plan can be reused,
However, the prominent items that can be effectively reused are:)

s Req frements ‘specification
e Design

e Code

s Test cases

° Z:@s._namm

Knowledge is the most abstract developinent artifact that can be reused. Qut of ail the
reuse artifacts, reuse of knowledge oceurs automatically without any conscious effort in this di-
rection. However. two major difficulties with unplanned reuse of knowledge is that a developer
experienced in one type of product might be included in a team developing a different type of
software. Also: it is difficult to remember the details of the potentially reusable development
knowledge. A planned reuse of knowledge can inerease the effectiveness of reuse. For this.
the reusable knowledge should be systematically extracted and documented. But. it is usually
very difficult to extract and document reusable knowledge.

&
=

0L

i

14.2 Why Almost no Reuse so Far? 413

14.2 WHY ALMOST NO REUSE SO FAR?

A common scenario in many software development industries is explained further.

Engineers working in software developmeut orgauizations oftcu have a feeling that the
civrent system that they are developing is similar to the last few systems built. However,
no attention is paid on haw not to duplicate what can be reused from previously developed
systems. Everything is being built from the scratch. The current system falls behind schedule
and no one has time to figure out how the similarity between the current system and the
systems developed in the past can be exploited.

Even those organizations which embark on a reuse program, in spite of the above difficnlty,
face other problems. Creation of components that are reusable in different applications is a
difficult problem. It is very difficult to anticipate the exact components that can be reused
across different applications. But, even when the revenble eomponents are carefully created
and made available for reuse, programmers prefér to create their own, because the-available
components are difficilt to understand and adapt to the new applications.

In this context, the following observation is significant

The routines of mathematical libraries are being reused very successfully by almost every
vno@.w__::»:s No one in their mind would think of writing a routine to compute sine or-cosine.
Let us investigate why reuse of commonly used mathematical functions is so easy.. Several
interesting aspects cmerge. Cosine means the same to all. FEveryone has clear ideas about
what kind of argument should cosine take, the type of processing to be carried ont and the
results returned. Secondly, mathematical libraries have a small interface. For example, cosine
requires only one parameter. Also, the data formats of the parameters are standardized. These
are some fundamental issues which would remain valid for all our subsequent discussions on
reuse. In the following section, we discuss ‘thé issues that must be addressed while starting
any rense program in an organization.

14.3- BASIC ISSUES IN ANY REUSE PROGRAM

The following are some of the basic issnes that must be clearly understood for starting any

"reuse program. ; :

s Compenent ereation

e Compouent indexing aud storing |
Component search

o Component understanding
Component adaptation

a Repository maintenance

Component creation

For component creation. the reusable components have to be first identified. Selection of the
right kind of components having potential for rense is important. In Section 14.4, we discuss
domain analysis 2s a promising technique which can be used to create reusable components.

414 Software Reuse

Component indexing and storing

Indexing requires classification of the reusable components so that they can be easily searched
when we look for a component for reuse. The companents need to be stored in a Relational
Database Management System (RDBMS) or an Object-Oriented Database System: (ODBMS)
for efficient access when the number of components hecomes large.

Component. searching :

The programmers need to search for right components matching their requirements in a data-
base of components. To be able to search components efficiently, the programmers require a
proper method to describe the components that they are looking for.

Component understanding : 3
The, programmers need a precise and sufficiently complete understanding of what the compo-
nent does to be able to decide whether they can reuse the component. To facilitate under-
standing, the components should be well documented and should do something simple.

Component adaptation

Often, the components may need adaptation before they can be reused, since a selected com-
ponent may not exactly fit the problem at hand. However, tinkering with the cade is also not
a satisfactory solution because this is very likely to be a source of bugs.

Repository mamtéenance . 4
A compaonent repository once is created requires continuous maintenance. New components,
as and when created have to be entered into the repository. The faulty components have to

be tracked. Further, when new applications emerge, the older applications becorae obsolete.
In this case, the obsolete components might have to be removed from the repository.

14.4 A REUSE APPROACH

A promising approach that is being adopted by many organizations is to introduce a build-
ing block approach into the software development process. For this, the reusable components
need to be identified after every development project is completed. The reusability of the
identified components has to be enhanced and these have to be catalogued into a component
library. It must-be clearly understood that an issue crucial to every reuse effort is the identifi-
cation of reusable components. Domain analysis is a promising approach to identify reusable
components. In the following, we discuss the domain analysis approach to create reusable
components. .

14.4.1 Domain Analysis

The aim of domain analysis is to identify the reusable components for a problem domain.

Reuse domain

A reuse domain is a technically related set of application areas. A body of information is
considered to be a problem domain for reuse, if a deep and comprehensive relationship exists
among the information items as characterized by patterns of similarity among the development

14.4 A Reuse Approach 415

components of the software product. A rense domain is a shared understanding of some com-
munity, characterized by concepts, techniques, and terminologies that show some coherence.
Examples of domains are accounting software domain, banking software domain, business
software domain, manufacturing automation software domain, telecommunication software
domain. ete.

Just to becom# familiar with the vocabulary of a domain requires months of interaction
with the experts. Often, one needs to be familiar with a network of related domains for
suceessfully carrying out domain analysis. Domain analysis identifies the objects, operations,
and the relationships ameng them. For example, consider the airline reservation system, the
reusable objects can be scats, flights, airports. crew, meal orders, etc. The reusable operations
can be scheduling a flight, reserving a seat, assigning crew to -flights, ete. We can see that
the domain analysis generalizes the application domain, A domain model transcends specific
applications. The common characteristics or the similarities between systems are generalized.

During domain analysis, a specific community of software developers get together to dis-
cuss community-wide solutions. Analysis of the application domain is required to identify the
reusable components. The actual construction of the reusable componénts for a domain is

called domain engineering.

Evolution of a reuse domain

The ultimate results of domain analysis is development of problem-oriented langnages. The
problem-oriented languages are also known as application .generators. These application
generators, once developed form application development standards. The domains slowly de-
velop. As a domain develops, we may distinguish the various stages it undergoes:

1. Stage 1: There is no clear and consistent set of notations. Obviously, no reusable compo-
nents are available. All software is written from scratch.

2. Stage 2: Here, only experience from similar projects are nsed in a development effort,
This means that there is only knowledge reuse.

3. Stage 3: Af this stage, the domain is ripe for reuse. The set of concepts are stabilized and
the notations standardized. Standard solutions to standard problems are available. There is
both knowledge and component reuse. .

4. Stage 4: The domain has been fully explored. The software development for the domain
can be largely be automated. Programs are not written in the traditional sense any more. Pro-
grams are written using a domain specific language, which is also known as an application
generator,

14.4.2 Component Classification

Components need to be properly classified in order o develop an effective indexing and stor-
age scheme. We have already remarked that hardware reuse has. been very successful, If we
look at the classification of hardware components for clue, then we can observe that hardware
components are classified using a multilevel hierarchy. At the lowest level, the components
are described in several forms: natural language description, logic schema, timing information,
etc. The higher the level at which a component is deseribed, the more is the ambiguity. This
has motivared the Prieto-Diaz’s classification scheme.

